
www.manaraa.com

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by

The Design and Analysis of Scheduling Algorithms for
Real-Time and Fault-Tolerant Computer Systems

Yingfeng Oh

May 1994

 ���

www.manaraa.com

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy (Computer Science)

Yingfeng Oh

This dissertation has been read and approved by the Examining Committee :

Dissertation Advisor: Sang H. Son

Committee Chairman: Jim Cohoon

Committee Member: Barry W. Johnson

Committee Member: Paul F. Reynolds, Jr.

Committee Member: Jorg Liebeherr

Accepted for the School of Engineering and Applied Science :

Dean, School of Engineering and
Applied Science

May 1994

www.manaraa.com

In memory of my father,

who taught me

(If youth only knew! If age only could!)

www.manaraa.com

Acknowledgements

Without the encouragement and support of many people, this thesis would never have been

written. These people have contributed to the completion of this thesis and the fulfillment of my edu-

cation here in their unique ways.

Special thanks go to my advisor Sang H. Son, for his support and guidance during the last

three years. When I was going nowhere, it was his patience and encouragement that brought me

back to the track. I am indebted to him in many other ways.

I wish to thank the other members of my committee for their advice and wisdom. I thank

Jim Cohoon for his willingness to take over reading the thesis at the last moment and providing

valuable advice to improve the quality of the thesis afterwards. Jorg Liebeherr, along with Almut

Burchard, contributed many wonderful ideas that led to the work presented in Section 2.3 and Sec-

tion 3.6. Ever since I took his course in fault-tolerance computing, Barry W. Johnson has been an

inspiration to me: to be a better person and a better professional. I am surprised at the care Paul

F. Reynolds, Jr. took in reading my thesis and the soundness of his advice on scheduling a meeting.

I would like to thank my former advisor Robert P. Cook for his support in my first two years

here and for his much valuable advice. I would also like to thank all the professors with whom I

have interacted, particularly Anita Jones, Gabriel Robins, Jack Davidson, Bill Wulf, Jim Ortega,

Worthy Martin, Jim French, Jeff Salowe, and John Knight.

I thank David Warme, Juhnyoung Lee, Chris Koeritz, Dongwei Liao, and TongTong Zhang

for their friendship, and Mike Alexander, Kevin Wika, Lifeng Hsu, Weifeng Zheng, Craig Williams,

Youngkuk Kim, Ambar Sarkar, Carmen Pancerella, Mark Bailey, Sally McKee, Tim Strayer, Rich

Gossweiler, and Chiang Shi-Ching for their help in various ways.

I am grateful for much help provided by Francis X. Mooney and Ginny Hilton.

The families of Wang Zhao Qing, Long Dou and Sun Eve, Mary and Bob Vickery, Steve and

Evelyn Braintwain deserve special thanks for their love, encouragement, and many free meals.

Finally, but not the least, I would like to thank my mother, my brother, and the rest of my

family for their unyielding love and unwaving support throughout all these years.

“Where there is a will, there is a way.”
-- Anonymous

“So every defect of the mind may have a special receipt.”
-- Francis Bacon, 1561-1626

www.manaraa.com

Abstract

Many applications are not feasible without the support of real-time and fault-toler-

ant computer systems. Timeliness and dependability are properties that predominantly dis-

tinguish a real-time system and a fault-tolerant system from other computer systems. In this

thesis we address the issue of supporting timeliness and dependability by studying four fun-

damental scheduling problems that are inherent to these systems.

The real-time systems we consider are the ones in which tasks are executed period-

ically; each task has an infinite number of requests and there are multiple tasks being exe-

cuted. There arises a problem of scheduling all requests of the tasks on as few processors

as possible such that not a single deadline is missed. This problem has optimal solutions for

a single processor system when tasks are preemptive; the Rate-Monotonic (RM) algorithm

is optimal for fixed-priority assignment and the Earliest Deadline First (EDF) is optimal for

dynamic priority assignment. However, the problem is intractable for a multiprocessor sys-

tem. The main goal of this thesis is to design and analyze algorithms for the problem of

scheduling a set of periodic, preemptive tasks on as few processors as possible such that

task deadlines are met on each processor by the RM algorithm.

We give the best on-line and off-line scheduling algorithms for this problem to date

with regard to worst case performance and average case performance. The worst case per-

formance of the algorithms is shown to have constant tight bounds through complex anal-

ysis and the average case performance is assessed by conducting simulation experiments.

Several new schedulability conditions are also obtained for the RM scheduling.

The second problem is defined the same way as the first one except that instead of

one version, a task has a number of versions that must be executed on different processors

for fault-tolerance purposes. We propose a solution to this problem with its worst case per-

formance analyzed and average case performance simulated.

The third problem is defined the same way as the second one except that instead of

www.manaraa.com

the RM algorithm, the EDF algorithm is used to guarantee task deadlines on each proces-

sor. This problem is equivalent to the problem of packing a list of colorful items into as few

bins as possible without violating the constraint that no two items having the same colors

are packed into a bin. An algorithm is proposed to solve this problem, with its worst case

performance shown to be tightly bounded by 1.7.

Finally we address the fundamental question of scheduling non-preemptive tasks on

a multiprocessor system for tolerance of processor failures or task errors. We show that this

problem is intractable even for three processors with the tolerance of one arbitrary proces-

sor failure. Two heuristic algorithms are then proposed to solve a restricted case of the

problem.

By solving these problems, the thesis contributes to the establishment of a firm the-

oretical foundation for guaranteeing task deadlines in real-time and fault-tolerant computer

systems.

www.manaraa.com

i

Table of Contents

1 Introduction ... 1

1.1. Overview .. 1
1.2. Motivations and Objectives ... 3
1.3. Assumptions and Problem Statements ... 7
1.4. Related Work ... 13
1.5. Approaches Taken ... 18
1.6. Organization .. 22

2 Rate-Monotonic Scheduling on a Single Processor System 24

2.1. Task Model .. 24
2.2. Some Important Lemmas ... 28
2.3. Period-Oriented Schedulability Conditions ... 32
2.4. Utilization-Oriented Schedulability Conditions .. 36
2.5. Miscellaneous Schedulability Conditions .. 44

3 Rate-Monotonic Scheduling on a Multiprocessor System 47

3.1. Fundamental Results of RM Scheduling on Multiprocessor 47
3.2. Scheduling Heuristics and Their Worst Case Performance Analysis 51
3.3. Rate-Monotonic-First-Fit ... 55
3.4. Rate-Monotonic-Best-Fit ... 63
3.5. The Refinements of RM-FF and RM-BF .. 70
3.6. Period-Oriented Heuristic Algorithms ... 74
3.7. Rate-Monotonic-First-Fit-Decreasing-Utilization ... 85
3.8. Heuristic Algorithms Using the Necessary and Sufficient Condition 105
3.9. Average Case Performance Evaluation ... 110

3.9.1. Performance Comparison of New and Existing On-line Algorithms 110
3.9.2. Performance Comparison of New and Existing Off-line Algorithms 114
3.9.3. Yet Another Performance Evaluation of the Algorithms 116

3.10. Summary .. 122

4 Supporting Fault-Tolerance in Rate-Monotonic Scheduling 123

4.1. Task Model .. 125
4.2. The Design and Analysis of FT-Rate-Monotonic-First-Fit 127
4.3. Average Case Performance Evaluation ... 135

5 Supporting Fault-Tolerance in Earliest-Deadline-First Scheduling 138

5.1. The Design and Analysis of FT-EDF-First-Fit .. 139
5.2. The Average Case Performance Evaluation .. 149

6 Non-preemptive Scheduling of Periodic Tasks for Fault-Tolerance 156

6.1. Non-overlapping of Backup Copies .. 158
6.1.1. Complexity of the Scheduling Problem ... 158
6.1.2. A 1-Timely-Fault-Tolerant Scheduling Algorithm 160
6.1.3. Analysis and Performance Evaluation ... 166

6.2. Overlapping of Backup Copies .. 171
6.2.1. Complexity of the Scheduling Problem ... 171
6.2.2. A 1-Timely-Fault-Tolerant Scheduling Algorithm 174

www.manaraa.com

ii

6.2.3. Analysis and Simulation Results ... 178

7 Conclusion ... 185

7.1. Contributions ... 185
7.2. Future Work ... 188

www.manaraa.com

iii

List of Figures

Figure 1.1 Problem Structure .. 12

Figure 2.1 Schedule for Two Tasks... 26

Figure 2.2 Thef(n, γ) Function.. 34

Figure 2.3 Relationship betweenT1 and T2. ... 45

Figure 3.1 Algorithm RM-FF-WC.. 52

Figure 3.2 RM-NF-WC vs. Optimal Schedules .. 55

Figure 3.3 Algorithm RM-FF.. 56

Figure 3.4 RM-FF vs. Optimal Schedules... 61

Figure 3.5 Algorithm RRM-FF ... 72

Figure 3.6 Algorithm RMST... 76

Figure 3.7 Algorithm RMGT .. 79

Figure 3.8 Algorithm RMGT-M ... 83

Figure 3.9 Algorithm RM-FFDU.. 86

Figure 3.10 Algorithm RM-FF-IFF... 106

Figure 3.11 Algorithm RM-FFDU-IFF... 108

Figure 3.12 Performance of Some On-line Algorithms (α = 0.2)............................. 111

Figure 3.13 Performance of Some On-line Algorithms (α = 0.5)............................. 112

Figure 3.14 Performance of Some On-line Algorithms (α = 0.7)............................. 112

Figure 3.15 Performance of Some On-line Algorithms (α = 1.0)............................. 113

Figure 3.16 Performance of RM-FF, RM-BF, RRM-FF, and RRM-BF (α = 0.3) ... 114

Figure 3.17 Performance of RM-FF, RM-BF, RRM-FF, and RRM-BF (α = 0.7) ... 115

Figure 3.18 Performance of RM-FF, RM-BF, RRM-FF, and RRM-BF (α = 1.0) ... 115

Figure 3.19 Performance of Off-line Algorithms (α = 0.2) 117

Figure 3.20 Performance of Off-line Algorithms (α = 0.5) 117

Figure 3.21 Performance of Off-line Algorithms (α = 0.7) 118

Figure 3.22 Performance of Off-line Algorithms (α = 1.0) 118

www.manaraa.com

iv

Figure 3.23 Performance of Some Algorithms (Tasks/processor = 3)...................... 120

Figure 3.24 Performance of Some Algorithms (Tasks/processor = 6)...................... 120

Figure 3.25 Performance of Some Algorithms (Tasks/processor = 3)...................... 121

Figure 3.26 Performance of Some Algorithms (Tasks/processor = 6)...................... 122

Figure 4.1 Algorithm 0.. 127

Figure 4.2 Algorithm 1.. 128

Figure 4.3 Algorithm FT-RM-FF.. 130

Figure 4.4 Task Configuration whenκ < m ≤ 2κ .. 131

Figure 4.5 Task Configuration when 2κ < m.. 132

Figure 4.6 Performance of FT-RM-FF and Algorithm 1 (α = 1.0)......................... 136

Figure 4.7 Performance of FT-RM-FF and Algorithm 1 (α = 0.5)......................... 137

Figure 5.1 Weighting FunctionW(α) .. 141

Figure 5.2 Worst Case Configuration of Zero Coarseness...................................... 144

Figure 5.3 Performance Comparison of the Four Algorithm (α = 1.0)................... 150

Figure 5.4 Performance Comparison of the Four Algorithm (α = 0.5)................... 151

Figure 5.5 Performance Comparison of the Four Algorithm (α = 1.0)................... 152

Figure 5.6 Performance of RM-Algorithm 1... 154

Figure 5.7 Performance of FT-RM-FF with Sorted Input....................................... 155

Figure 5.8 Performance of FT-EDF-FF with Sorted Input 155

Figure 6.1 Mapping from PARTITION to Task Sequencing.................................. 160

Figure 6.2 Mapping from Task Sequencing to PARTITION.................................. 161

Figure 6.3 Algorithm NOV ... 162

Figure 6.4 Scheduling Process of NOV .. 162

Figure 6.5 Schedule Generated by LPT .. 163

Figure 6.6 Schedule Generated after Swapping and Appending............................. 163

Figure 6.7 Algorithm NOV-Test ... 166

Figure 6.8 Performance of NOV ... 168

Figure 6.9 Relationship Between Performance Parameters 169

www.manaraa.com

v

Figure 6.10 A Schedule Generated by LPT and NOV_1... 170

Figure 6.11 Mapping from PARTITION to Task Sequencing.................................. 173

Figure 6.12 Mapping from Task Sequencing to PARTITION.................................. 174

Figure 6.13 Mapping from Task Sequencing to PARTITION.................................. 174

Figure 6.14 Algorithm OV .. 176

Figure 6.15 Schedule created by LPT ... 177

Figure 6.16 Scheduling Process of OV ... 177

Figure 6.17 Relationship Between Schedules ... 181

Figure 6.18 Performance of OV.. 184

www.manaraa.com

vi

List of Tables

Table 1.1 Worst Case Performance of Existing Scheduling Algorithms........... 16

Table 3.1 Worst Case Performance Bounds of RM-FF underα 62

Table 3.2 Worst Case Performance Bounds of RRM-FF underα..................... 71

Table 3.3 Performance of RM-FFDU for some values ofx............................... 87

Table 3.4 Weighting Function for x∈(1/5, 1/4] .. 90

Table 3.5 Weighting Function for x∈(, 1/5] 93

Table 3.6 Weighting Function for x∈(1/6,] 95

Table 3.7 Weighting Function for x∈(5() − 3/5, 1/6] 98

Table 7.1 Performance Bounds of New Algorithms for RMMS 186

2
1 4⁄

1–

2
1 4⁄

1–

2
1 5⁄

1–

www.manaraa.com

vii

List of Theorems

Theorem 2.1 ...26

Theorem 2.2 ...27

Theorem 2.3 ...28

Theorem 2.4 ...32

Theorem 2.5 ...34

Theorem 2.6 ...35

Theorem 2.7 ...36

Theorem 2.8 ...42

Theorem 2.9 ...44

Theorem 2.10 ...46

Theorem 3.1 ...47

Theorem 3.2 ...48

Theorem 3.3 ...50

Theorem 3.4 ...53

Theorem 3.5 ...53

Theorem 3.6 ...58

Theorem 3.7 ...60

Theorem 3.8 ...61

Theorem 3.9 ...69

Theorem 3.10 ...70

Theorem 3.11 ...71

Theorem 3.12 ...74

Theorem 3.13 ...76

Theorem 3.14 ...77

Theorem 3.15 ...79

Theorem 3.16 ...83

www.manaraa.com

viii

Theorem 3.17 ...85

Theorem 3.18 ...104

Theorem 3.19 ...106

Theorem 3.20 ...107

Theorem 3.21 ...109

Theorem 3.22 ...109

Theorem 4.1 ...128

Theorem 4.2 ...133

Theorem 5.1 ...140

Theorem 6.1 ...158

Theorem 6.2 ...164

Theorem 6.3 ...169

Theorem 6.4 ...170

Theorem 6.5 ...171

Theorem 6.6 ...177

Theorem 6.7 ...182

www.manaraa.com

ix

List of Lemmas

Lemma 2.1 ... 28

Lemma 2.2 ... 29

Lemma 2.3 ... 30

Lemma 3.1 ... 56

Lemma 3.2 ... 57

Lemma 3.3 ... 58

Lemma 3.4 ... 59

Lemma 3.5 ... 62

Lemma 3.6 ... 66

Lemma 3.7 ... 66

Lemma 3.8 ... 66

Lemma 3.9 ... 86

Lemma 3.10 ... 87

Lemma 3.11 ... 88

Lemma 3.12 ... 89

Lemma 3.13 ... 90

Lemma 3.14 ... 92

Lemma 3.15 ... 94

Lemma 3.16 ... 97

Lemma 4.1 ... 130

Lemma 4.2 ... 131

Lemma 4.3 ... 134

Lemma 4.4 ... 134

Lemma 5.1 ... 140

Lemma 5.2 ... 141

Lemma 5.3 ... 142

www.manaraa.com

x

Lemma 5.4 ... 142

Lemma 5.5 ... 143

Lemma 5.6 ... 145

Lemma 5.7 ... 146

Lemma 5.8 ... 147

Lemma 5.9 ... 148

Lemma 6.1 ... 157

Lemma 6.2 ... 157

Lemma 6.3 ... 169

Lemma 6.4 ... 180

Lemma 6.5 ... 181

www.manaraa.com

xi

List of Symbols

α: The maximum allowable utilization of a task.α = .

β: The difference between two V values of tasks.

γ: The maximum ratio between any two task periods.

δ: A small positve number.

∆: A time interval.

ε: Another small positve number.

: The set of natural numbers.

κ: The maximum redundancy degree of a task, i.e., the maximum number of ver-

sions of a task.κ = .

: The redundancy degree of task .

: A set of tasks.

: The starting time of task t (in a schedule).

: The ith task. Or the computation time of theith task (in Chapter 6 only).

: The ith task assigned on processor.

ϖ: Total weight of a task set. ϖ = .

: The ith bin.

: The ith item.

: The computation time of task .

D: A time period.

: The deadline of task t.

: The length (or computation time) of task t.

N: The number of processors required to schedule a task set. N = .

: The minimum number of processors required to schedule a task set.

: The number of processors required to schedule a task set by a given heuristic A.

n: The number of tasks in a set or assigned to a processor.

maxi Ci Ti⁄()

Z
+

max 1 i n≤ ≤{ } κi

κi τi

Σ

σ t()

τi

τj i, Pj

W ui()
i 1=
m∑

Bi

bi

Ci τi

d t()

l t()

nii 1=
∞∑

N0

NA

www.manaraa.com

xii

ni: The number of processors to each of which exactlyi ≥ 1 tasks are assigned.

: The ith processor (in the processor group P).

: The ith processor in the processor group Q.

: The worst case performance bound (ratio) for the heuristic A.

: The release time of task t.

: The period of task .

U: The utilization of a task set.U = = .

: The utilization of processor .

: The utilization (or load) of the task . = / .

: The utilization of task .

: The V value of task . = − .

: Weighting function for .

: The ratio between the periods of two adjacent tasks. .

Pi

Qi

ℜA
∞

r t()

Ti τi

Ci Ti⁄
i 1=
n∑ uii 1=

n∑
Ui Pi

ui τi ui Ci Ti

uj i, τj i,

Vi τi Vi T2 ilog T2 ilog

W ui() ui

xi xi Ti 1+ Ti⁄=

www.manaraa.com

1

Chapter 1 Introduction

1.1. Overview

Scheduling problems occur in a variety of situations in which a set ofresources is

to be used to perform a set oftasks. The general problem of scheduling [11, 12] is to allocate

resources for the performance of a set of tasks such that specifiedobjectives are achieved.

Examples of scheduling problems include

(1) In summer Olympic Games, each game must be scheduled to take place at a cer-

tain site; some games are scheduled for the same site but for different time slots, and some

games must be finished before others begin. For example, no championship game can be

carried out until the games which decide the top two teams have been played.

(2) TV programs are interrupted periodically to show commercials. The number of

commercials to be shown is subject to the constraint that the total time for commercials can-

not exceed the time limit for program interruption.

(3) At an airport with a number of runways, decisions must be made concerning the

assignment of aircraft to runways and the order in which aircraft take off or land on these

runways. Furthermore, spare runways must be provided, or enough idle times reserved, for

emergency situations such as the malfunctioning of some aircraft or the blocking of certain

runways.

In these examples, the sites, the TV network, and the runways are resources and the

“The aim of princes and philosophers is to improve.”
-- Gottfried Wilhelm Leibniz, 1646-1716

www.manaraa.com

2

playing of games, the showing of commercials, and the take-off or landing of aircraft are

tasks to be performed. Our basic thesis is that regardless of the type of resources available

and the character of the particular tasks to be performed, there is a fundamental similarity

among all these scheduling problems: given that the following variables are known, our

goal is to determine the assignment of resources to tasks and the order in which the tasks

will be executed on the assigned resources according to some objectives:

(1) a set of tasks to be performed;

(2) a set of resources or facilities that may be employed in the performance of the

tasks; and

(3) the sequence of elemental activities required to perform each of the tasks and

any restrictions on the order in which tasks are performed.

While determining the assignment and the ordering, one should satisfy the constraints that

are placed on the resources and the tasks. For example, in assigning aircraft to use a runway,

the take-off time and the landing time of each aircraft must be observed; leaving insufficient

time between a take-off and a landing might put life in jeopardy.

Many scheduling problems obviously get solved quite casually or automatically:

students finish their degree requirements, professors teach classes, aircraft land, and we get

served in a restaurant. Most of these problems are solved without explicit recognition that

a scheduling problem even exists. Sometimes an ordering is determined by chance; more

often tasks are performed because their deadlines are close. In many situations, a schedul-

ing problem is worth considering because a proper scheduling decision may result in saving

time and resources, or minimizing costs. For example, proper allocation of resources and

ordering of tasks to be performed in a car factory may speed up the manufacturing of cars

and make the business more profitable. In many real life problems, poor scheduling deci-

sions can lead to excessive costs. Even more critical are cases where it is necessary to com-

plete the tasks before some prescribed deadlines, or else irreparable loss might be incurred.

This thesis concerns itself with one aspect of the general scheduling problem, that

www.manaraa.com

3

of scheduling a set of tasks to meet their deadlines, under the constraint that all task dead-

lines must be honored. The scheduling problem will be studied in the context of real-time

and fault-tolerant computer systems, though many of the results are valid for problems in

other fields as well, for instance, a variation of the classical bin-packing problem.

1.2. Motivations and Objectives

Many applications that are mission-critical and life-critical, such as space explora-

tion, the operation of nuclear power plants and defense systems, aircraft avionics, and

robotics are not feasible without the support of computer systems. These applications

require long duration of reliable operations as well as timeliness of operations. Computer

systems that are used to support these applications are mainly parallel or distributed sys-

tems that are embedded into complex (or even hazardous) environments. The two most

sought-after properties of these systems aretimeliness anddependability.

Timeliness dictates that tasks must be finished within certain timing constraints.

Computer systems that support timeliness are referred to asreal-time systems. The correct-

ness of a computation in a real-time system depends not only upon the results of computa-

tion but also upon the time at which results are generated. There are two major types of real-

time systems: hard and soft real-time systems. In a hard real-time system, a late answer is

a wrong answer. In a soft real-time system, a late answer may have some diminishing value.

Dependability is the quality of service that a particular system provides, which

encompasses such concepts as reliability, availability, safety, maintainability, and perform-

ability [29]. One type of computer systems that support dependability is thefault-tolerant

system. A fault-tolerant system can continue to correctly perform its specified tasks even

in the presence of hardware failures and software errors [29].

The timeliness of a real-time system is ensured through scheduling algorithms. One

major characteristic of real-time tasks is the repeated invocation of tasks at certain time

periods, or in the parlance of practitioners, the execution of closed-loop control functions.

www.manaraa.com

4

A task that arrives at every time interval has an unbounded number of requests, each of

which must be executed by its deadline. The periodicity of real-time tasks comes directly

from applications. For instance, the task of sensing a physical environment for certain

quantities (e.g., the height or speed of a flying space shuttle) must be carried out periodi-

cally. Since there are an unbounded number of requests for each task and there are usually

multiple tasks in a system, there arises a problem of scheduling all requests of the tasks

properly so that their deadlines are met. The development of scheduling algorithms for

periodic task systems has been a major focus in the area of real-time scheduling theory [1,

16, 19, 20, 24, 28, 40, 42, 43, 46, 47, 60, 64, 68, 70].

Since current technology is incapable of producing hardware components which

never fail or software programs which are free of errors, a task might miss its deadline

because of processor failures or task errors. To tolerate hardware failures or software errors,

hardware and software redundancy techniques can be used. Examples of redundancy tech-

niques areN-Modular-Redundancy (NMR) [29], Data-Diversity [35], Recovery Block

[66], andN-version Programming (N-VP) [2]. At the level of task scheduling, hardware

and software are abstracted as processors and tasks. In general, to tolerate processor fail-

ures, redundant processors are used to execute the same software and the final results are

obtained through voting on the multiple results. To tolerate task errors, multiple implemen-

tations of software in the form of either different versions (N-VP) or data diversity are

employed. A hybrid approach which combines software and hardware redundancy tech-

niques can be used to tolerate task errors, processor failures, or both. For fault-tolerance

purpose, associated with a task is a number of versions, that must be executed on different

processors.

A real-time scheduling theory called Periodic Task Scheduling (PTS) has been

gradually accepted as a general theory in supporting timeliness and, to some extent,

dependability in a real-time system. This theory ensures that for a uniprocessor system, as

long as the CPU utilization of all tasks lies below a certain bound and appropriate schedul-

www.manaraa.com

5

ing algorithms are used, all tasks will meet their deadlines without the programmer know-

ing exactly when any given request of a task is running. Even if a transient overload occurs,

a fixed subset of critical tasks will still meet their deadlines as long as their total CPU uti-

lization lies below a certain bound. This theory puts real-time software development on a

sound analytical footing. The major components of PTS are the Rate-Monotonic (RM)

algorithm and the Earliest Deadline First (EDF) algorithm. The RM algorithm is optimal

for fixed priority assignment for scheduling a set of periodic tasks on a uniprocessor sys-

tem, while the EDF algorithm is optimal for dynamic priority assignment.

First discovered by Liu and Layland [46] and Serlin [68], the RM and EDF algo-

rithms have been proven to be viable scheduling techniques for real-time systems.

Researchers have successfully applied these techniques to tackle a number of practical

problems, such as task synchronization [60], bus scheduling [69], joint scheduling of peri-

odic and aperiodic tasks [77, 79], mode change [70, 81], and transient overload [63]. In

each of these areas, conventional RM and EDF algorithms have been adapted and extended

to produce effective algorithms. Recently, the RM algorithm has been used in a number of

applications. For example, it has been specified for use with software on board the Space

Station as the means for scheduling multiple independent task execution [22]. The RM

algorithm will be built into the on-board operating system, and is directly supported by the

Ada compiler in use.

Although the RM scheduling is optimal for uniprocessor systems with fixed priority

assignment and the EDF is optimal with dynamic priority assignment, unfortunately, nei-

ther is optimal for multiprocessor systems. In fact, the problem of optimally scheduling a

set of periodic tasks on a multiprocessor system using either fixed priority or dynamic pri-

ority assignment is known to be NP-complete [43]. An optimal algorithm is the one that

uses the minimum number of processors to schedule any task set. Given the intractability,

any practical solution to the problem of scheduling periodic tasks on multiprocessor sys-

tems presents a trade-off between computational complexity and performance. Several

www.manaraa.com

6

efforts have been devoted to the development of heuristic algorithms for the scheduling

problem [16, 17, 19, 20]. However, due to the difficulty involved in showing the effective-

ness of the algorithms, few results have been obtained. In short, the progress in establishing

a firm theoretical foundation for rate-monotonic scheduling on a multiprocessor has been

slow.

The satisfactory solution to the problem of scheduling a set of periodic tasks on a

multiprocessor system has a number of practical implications. Of these, two are very

important: (1) the real-time application domain is becoming increasingly large. As require-

ments of real-time support for industrial and military applications become more sophisti-

cated, the employment of multiprocessors to meet computational power requirements

becomes essential. (2) The state-of-the-art of hardware technology makes multiprocessor

support a reality for many more systems. Thus, the scheduling of periodic tasks on a mul-

tiprocessor has become an urgent problem that needs to be solved.

In this thesis, we will consider the problem of scheduling a set of periodic tasks on

a multiprocessor system such that the task deadlines are guaranteed. Meeting all task dead-

lines is our first objective in solving the problem. In doing so we primarily employ either

the RM or the EDF algorithm. Like so many other multiprocessor scheduling problems,

there is an obvious solution for this scheduling problem: if we use as many processors as

there are tasks, i.e., one processor for one task, then each task will meet its deadline and

hence the scheduling problem will be solved. Aside from the fact that it is likely to be far

from optimal, this solution has little practical relevance. Though current technology makes

it possible to build computer systems that have hundreds of thousands of processors, it is

not cost-effective to solve the scheduling problem in this manner. Requiring more proces-

sors in a system affects the cost, weight, size, power consumption, and communication

costs of the whole system, the increase of any of which can jeopardize the success of the

whole application. Therefore, besides the objective to ensure that all task deadlines are met,

our second objective in solving the scheduling problem is to use as few processors as pos-

www.manaraa.com

7

sible to schedule any given set of tasks. This objective will be relentlessly pursued through-

out the thesis.

Our third objective is to support the fault-tolerance of real-time systems. The real-

time systems under study are strictly hard real-time systems, each of which performs its

functions through a set of periodic tasks. To enhance fault-tolerance, we assume that each

task has multiple versions, each of which must be executed on different processors. For

convenience, we use the word “versions” to mean any of the following: copies of the same

implementation (NMR), versions from different implementation strategies (N-VP), or cop-

ies of the same implementation with different input and output schemes (Data Diversity).

Since tasks are periodic, all versions of a task are periodic and their deadlines are the same.

When multiple versions are used for a task, the concept of a task becomes an abstract one,

while each of its versions becomes a real entity that is executed periodically. Thus the

scheduling problem becomes one to minimize the number of processors used to accommo-

date a set of multiple-version periodic tasks such that the deadline of each task is met and

the versions of each task are executed on different processors. The effectiveness of these

redundancy techniques, and the selection of a particular redundancy technique to be used

are not considered here. Furthermore, the problems of processor monitoring, failure detec-

tion, failure notification, and voting coordination are beyond the scope of this thesis.

This fault-tolerant scheduling problem, though simplified, captures the two most

important properties of the systems under study: theperiodicity of tasks in a real-time sys-

tem and themultiple execution of tasks for fault-tolerance. The solution to this problem will

inevitably shed more light on building fault-tolerant real-time systems.

1.3. Assumptions and Problem Statements

Since it is known that any slight modification of the constraints imposed on a sched-

uling problem may alter its complexity, the meaningful way to approach a scheduling prob-

lem is to state the constraints placed upon the problem precisely before any attempt is made

www.manaraa.com

8

to solve it. Besides, we should be aware of how our problems relate to other problems that

have been studied. To achieve these two goals, we offer a top-down description of the prob-

lems and their relationship to other scheduling problems. A complete description of the

general scheduling problem under various constraints [9, 12, 26], though desirable, is

beyond the scope of this thesis.

Generally, a scheduling problem is defined by four parameters: (1) the machine

environment, (2) the task characteristics, (3) the scheduling environment, and (4) the sched-

uling objectives. The machine environment specifies the types of the processors and their

quantity. The task characteristics specify the timing constraints of the tasks, the relationship

among them, and the relative importance of the tasks. The scheduling environment

describes the restrictions imposed on the schedule: whether the tasks are preemptive or

non-preemptive, and whether the scheduling is on-line or off-line. Finally, the objectives

define such scheduling goals as minimizing the total number of processors, maximizing the

total value of a system, or guaranteeing task deadlines. Our assumptions are as follows:

(1) For machine environment, we assume that processors are identical in the sense

that the run-time of a task remains the same across all processors. Although for the most

part, the number of processors available is assumed to be infinite, recall that our dominant

objective is to use as few processors as possible.

(2) For the task characteristics, we assume that tasks are periodic and have one or

more versions. The release time, computation time, and period for a task can vary. The

deadline of each request of a task coincides with the arrival of the next request. Tasks are

equally important in the sense that no missing of task deadlines is allowed. The tasks are

independent in that the requests of a task do not depend on the initiation or the completion

of the requests of other tasks.

The restriction that tasks are independent may seem overly restrictive, because pre-

cedence constraints are usually present in conventional task models. Yet a close look

reveals that it is not possible to impose any precedence constraint upon periodic tasks,

www.manaraa.com

9

unless all the tasks have the same period. This point can be illustrated by considering the

two tasks: = (,) and = (,) with =k for k > 1, where and

are the computation time and period of task, respectively. If the precedence constraint

is such that the execution of always precedes that of , then we have the two cases: if

the precedence constraint is honored, then for every time units,k − 1 requests of task

 will miss their deadlines. If the deadline constraint is honored, thenk requests of task

 must be executed before one request of task is executed, resulting in the violation of

the precedence constraint. If the precedence constraint is reversed, then it can be similarly

shown that both the precedence constraint and the deadline constraint cannot be honored at

the same time. If all the tasks share the same period, the presence of precedence constraints

might be meaningful. Even for this special case, the tasks that share the same period can be

treated as one composite task in the periodic task model. Therefore, the difference in task

periods has in fact imposed the characteristic of task independence.

Although it is not sensible to impose any precedence constraint upon periodic tasks,

it may occur in some practical applications that the execution of certain requests of the peri-

odic tasks may trigger the execution of some aperiodic tasks. The scheduling of periodic

tasks together with aperiodic tasks is beyond the scope of this thesis.

(3) For the scheduling environment, we will consider both preemptive and non-pre-

emptive task scheduling, though we will focus more on the preemptive scheduling. If the

tasks are preemptive, then the execution of a task can be interrupted and later be resumed

from where it is interrupted; otherwise, the execution of a task must be finished once it is

started.

Another parameter in the scheduling environment concerns when the characteris-

tics of the whole set of tasks are available. If the entire task set is knowna priori, then the

problem is referred to as being off-line, otherwise, it is said to be on-line. The algorithm

that solves an on-line (off-line) problem is referred to as an on-line (off-line) algorithm.

While off-line algorithms have the advantages of being efficient and invoking min-

τ1 C1 T1 τ2 C2 T2 T1 T2 Ci Ti

τi

τ1 τ2

T1

τ2

τ2 τ1

www.manaraa.com

10

imal run-time scheduling overhead, there are situations where on-line algorithms must be

used. For example, a change of mission in an application may require the execution of a

totally different task set. Or the failure of some processors may necessitate the re-assign-

ment of tasks. In these scenarios, the entire task set to be scheduled may change dynami-

cally, that is, tasks can be added or deleted from the task set on-the-fly. We will develop

both off-line and on-line algorithms for the scheduling problems.

(4) The scheduling objectives are (i) to meet all task deadlines, (ii) to minimize the

number of processors required to accommodate a task set such that all task deadlines are

met; and (iii) to support fault-tolerance if a task has multiple versions in execution.

The general solution to a multiprocessor problem involves two algorithms: one to

assign tasks to individual processors, and the other to schedule tasks assigned on each indi-

vidual processor. Two major approaches exist for assigning tasks to processors:partition-

ing andnon-partitioning approaches. In a non-partitioning approach, each occurrence of a

task may be executed on a different processor, while a partitioning approach requires that

all occurrences of a task be executed on the same processor. The partitioning approach is

often preferred because relatively low overhead is involved in the scheduling process.

A scheduling algorithm provides a set of rules that determine the processor(s) to be

used and the task(s) to be executed at any particular point in time. One way to specify a

scheduling algorithm is to allocate priorities to requests such that a higher-priority request

has precedence over a lower-priority request in execution. We will consider only priority-

driven scheduling algorithms. Priority-driven scheduling algorithms can be classified into

two categories: fixed priority and dynamic priority assignment algorithms. With a fixed pri-

ority assignment, the priorities of tasks, once assigned, will not be changed. With a dynamic

priority assignment, the priorities of tasks can be changed dynamically in execution. We

will consider multiprocessor heuristic algorithms based on both fixed priority and dynamic

priority assignment.

Now we are ready to define the scheduling problems more rigorously. A set ofn

www.manaraa.com

11

tasks is given to be scheduled on a number of processors. Each task

is characterized by the tuple, = , where

 are the computation times of the versions of taskτi. , , and are

the release time, deadline, and period of taskτi, respectively. The first request of the taskτi

arrives or is released at time, and the subsequent requests are released at times + j •

 with j = 1, 2,…. If is specified as a variable, then the task system is termed anape-

riodic task system. Otherwise, it is aperiodic task system. The deadline for a request of

taskτi is defined to be the moment time units away from the release time of the request.

In other words, the deadline is relative to the release time. If < , then the deadline

of a request is shorter than the period of the task, i.e., the current request of a task must be

finished before the arrival of the next request. If a task has multiple versions for fault-tol-

erance, the request of a task constitutes the request of all its versions.

A k-Timely-Fault-Tolerant (hereinafterk-TFT) schedule is defined as a schedule in

which no task deadlines are missed, despitek arbitrary processor failures or version errors.

Then, given a setΣ of n tasks,m processors, the scheduling problem(hereinafter referred

to as the TFT scheduling problem) can be defined, in terms of a decision problem, as decid-

ing whether there exists a schedule, which isk-TFT for the task setΣ on m processors. In

reality, it is more likely that a task setΣ is given and the scheduling goal is to find the min-

imum number of processorsm, such that ak-TFT schedule can be constructed for the task

setΣ onm processors. This problem then becomes an optimization problem.

Since a comprehensive study of the various cases of the TFT problem is beyond the

scope of this thesis, we will focus our attention on four problems. The first problem is the

development of efficient heuristic algorithms for scheduling a set of periodic tasks on a

minimum number of processors such that the task deadlines are met on each processor by

the RM algorithm. The second problem is to support fault-tolerance in rate-monotonic

scheduling on multiprocessor systems. The third problem is to support fault-tolerance in

earliest deadline first scheduling on multiprocessor systems. Finally, the last problem con-

Σ τ1 τ2 … τn, , ,{ }=

τi Ci1 Ci2 … Ciκi
, , ,() Ri Di Ti, , ,()

Ci1 Ci2 … Ciκi
, , , κi Ri Di Ti

Ri Ri

Ti Ti

Di

Di

Di Di Ti

www.manaraa.com

12

siders the fault-tolerance of the systems where the execution of tasks cannot be interrupted.

Because of its relative importance and practical relevance, the first problem is the major

focus for this thesis. The relationships among some of the pertinent scheduling problems

are given in Figure 1.1.

Problem 1: Consider a computer system in which all tasks are periodic. For each

periodic task, there are an infinite number of requests, each of which must be executed

before the next request arrives. The arrival of a request occurs at a fixed time interval. The

deadline of a request is defined as the arrival of the next request. Given a set of such tasks,

what is the minimum number of processors required to execute it such that every request

of every task finishes at or before its deadline by the RM algorithm? Note that we assume

that a processor can only execute one task at a time and once a task is assigned to a proces-

sor, all its requests will be executed on that processor. The execution of a task may be inter-

rupted and resumed at another time on the same processor. There is no cost or time loss

associated with such an interruption or “preemption”. This problem is referred to as the

The General
Scheduling Problem

Aperiodic

Preemptive Non-preemptive

Multiprocessor

Fixed Dynamic

Multi-Version Multi-Version

Uniprocessor

Periodic

Uniprocessor Multiprocessor

Priority
(RM)

Priority
(EDF)

Fixed
Priority
(RM)

Dynamic
Priority
(EDF)

Multi-Version

: Problems under study

: Related Problems

Figure 1.1: Problem Structure

Uni-Version (Bin-packing)
Uni-Version

(Problem 1) (Problem 2) (Problem 3)

(Problem 4)

www.manaraa.com

13

Rate-Monotonic Multiprocessor Scheduling (RMMS) problem.

Problem 2: Consider a computer system in which tasks are not only periodic, but

also have a number of versions. Like a task itself, a version also has an infinite number of

requests, that must be executed like the requests of a task. The only difference is that a cer-

tain number of versions belongs to a task, and no two of them should be executed on the

same processor. The idea of using “version” is to provide an abstraction over various redun-

dancy techniques used to provide fault-tolerance capabilities in a computer system. The

number of versions a task can have is called the degree of redundancy. The degree of redun-

dancy may differ from task to task. Given a set of such tasks, what is the minimum number

of processors required to execute it such that all requests of all versions finish within their

respective deadlines using the RM algorithm? This problem is referred to as the Fault-Tol-

erant Rate-Monotonic Multiprocessor Scheduling (FT-RMMS) problem. Clearly, RMMS

is a special case of FT-RMMS when the number of versions of a task is one for all tasks.

Problem 3: If the task deadlines on each processor are guaranteed by the EDF algo-

rithm instead of by the RM algorithm as in Problem 2, what is the minimum number of pro-

cessors required to do so? This problem is referred to as the Fault-Tolerant Earliest-

Deadline-First Multiprocessor Scheduling (FT-EDFMS) problem.

Problem 4: What is the time complexity of scheduling a set of non-preemptive

tasks to a number of processors such that processor failures can be tolerated? Given a set

of non-preemptive tasks, each with a primary copy and a backup copy, how should they be

scheduled such that task deadlines are met despite one arbitrary processor failure, i.e., how

is an 1-TFT schedule generated?

1.4. Related Work

We review the existing work according to the preemption of tasks; work on preemp-

tive scheduling is first reviewed, followed by work on non-preemptive scheduling.

If a set of tasks can be scheduled such that all task deadlines can be met by some

www.manaraa.com

14

algorithms, then we say that the task set isfeasible. If a set of periodic tasks can be feasibly

scheduled on a single processor, then theRate-Monotonic (RM) [46] or Intelligent Fixed

Priority algorithm [68] is optimal for fixed priority assignment, in the sense that no other

fixed priority assignment algorithm can schedule a task set which cannot be scheduled by

the RM algorithm. The RM algorithm assigns priorities to tasks according to their periods,

where the priority of a task is in inverse relationship to its period. In other words, a task

with a shorter period is assigned a higher priority. The execution of a low-priority task will

be preempted if a high-priority task arrives. Liu and Layland proved that a set ofn periodic

tasks can be feasibly scheduled by the RM algorithm if the total utilization of the tasks is

no more than a threshold number, which is given by . The utilization of a task

is defined as the ratio between its computation time and its period, and the total utilization

of a set of tasks is the sum of the utilizations of all tasks in the set.

Three other schedulability conditions were later developed by Dhall and Liu [20] in

developing heuristic scheduling algorithms for multiprocessor systems. All these condi-

tions are sufficient conditions. Lehoczky, Sha, and Ding recently discovered a schedulabil-

ity condition that is both necessary and sufficient [40].

For dynamic priority assignment, the EDF algorithm is optimal in the sense that no

other dynamic priority assignment algorithm can schedule a task set which cannot be

scheduled by the EDF algorithm. The request of a task is assigned the highest priority if its

deadline is the closest. Furthermore, a set of periodic tasks can be feasibly scheduled on a

single processor system by the EDF algorithm if and only if its total utilization is no more

than one.

Since the problem of scheduling a set of periodic tasks on a multiprocessor system,

using either fixed priority assignment or dynamic priority assignment, is NP-complete,

heuristic algorithms have been sought to solve it. The approach taken by a number of

researchers [16, 17, 19, 20, 60] is to partition a given set of tasks into different groups, such

that the tasks in each group can be feasibly scheduled on a single processor by a given algo-

n 2
1 n⁄

1– 
 

www.manaraa.com

15

rithm.

An optimal algorithm for the scheduling problem is the one that uses the minimum

number of processors to schedule any task set. In all studies, the performance of heuristic

algorithms is evaluated against that of an optimal algorithm. In particular for real-time heu-

ristics, the performance is measured using the worst case bounds of , where is

the number of processors required to schedule a task set by a given heuristic A, and is

the number of processors required to schedule the same task set by an optimal algorithm.

Bounds for the existing heuristics are determined by the following expression (whose

meaning will be explained later): . is often referred to as theworst

case performance bound or asymptotic bound of the heuristic A.

Since a set of periodic tasks can be feasibly scheduled by the EDF algorithm on a

single processor system so long as its total utilization is no more than one, the problem of

scheduling a set of periodic tasks on a multiprocessor system where each individual pro-

cessor runs the EDF algorithm can be reduced to the one-dimensional bin-packing problem.

The one-dimensional bin-packing problem is to pack a list of variable-sized items into as

few unit-sized bins as possible. The bin-packing problem has been the focus of intensive

study for many years. A number of efficient algorithms have been proposed and analyzed.

Among the many heuristics, Next-Fit (NF) has a tight bound of 2. First-Fit (FF) and Best-

Fit (BF) have a tight bound of 1.7. First-Fit-Decreasing (FFD) has a tight bound of 11/9.

Any on-line heuristic cannot have a worst case bound lower than 1.5333 [44].

The existing heuristic algorithms that schedule a set of periodic tasks on a multipro-

cessor using fixed priority assignment are summarized in Table 1.1. The measure

 denotes the computation time complexity for scheduling a set ofn tasks.

Dhall and Liu were the first to propose two heuristic algorithms for the scheduling

problem [20]. The algorithms,Rate-Monotonic-Next-Fit(RMNF) andRate-Monotonic-

First-Fit (RMFF), were shown to have worst case performance bounds of 2.4≤ ≤

2.67, and 2≤ ≤ (4(21/3)/(1 + 21/3) ≈ 2.23. Unfortunately, the upper bound derived

NA N0⁄ NA

N0

ℜA
∞

NA N0⁄
N0 ∞→
lim= ℜA

∞

O n nlog()

ℜRMNF
∞

ℜRMFF
∞

www.manaraa.com

16

for RMFF was incorrect due to several errors in their proof, which are noted in Appendix

A. Furthermore, their RMFF and RMNF are off-line, since they require that tasks must be

assigned in the order of increasing period.

Davari and Dhall later considered two other algorithms calledFirst-Fit-Decreas-

ing-Utilization-Factor (FFDUF) andNEXT-FIT-M (NF-M) [16, 17]. The FFDUF algo-

rithm sorts the set of tasks in non-increasing order of task utilization and assigns tasks to

processors in that order. The NEXT-FIT-M algorithm classified tasks intoM classes with

respect to their utilizations. Processors are also classified intoM classes, so that a processor

in k-class executes tasks ink-class exclusively. Their worst case performance bounds are

≤ 2, and ≤ SM whereSM = 2.34 forM = 4, andSM → 2.2837 whenM

→ ∞.

The FFDUF algorithm is a static algorithm, sincea priori knowledge about the

tasks is required, i.e., tasks must be in the order of non-decreasing task periods. In the gen-

eral sense, the NF-M algorithm is an on-line algorithm, but its performance depends on the

pre-selection ofM and henceSM, where SM is a decreasing function ofM, e.g.,SM = 2.34

for M = 4, andSM → 2.2837 for M → ∞.

For non-preemptive scheduling, the problem of minimizing the number of proces-

sors is more difficult. Jeffay, Stanat, and Martel [28] have shown that the problem of deter-

mining whether a set of non-preemptive, periodic tasks with different release times is

schedulable is NP-hard in the strong sense. Furthermore, they have shown that a set of peri-

odic tasks may not be schedulable non-preemptively on a single processor, even if its total

Table 1.1: Worst Case Performance of Existing Scheduling Algorithms

Algorithm A Complexity Type

RMNF [20] [2.4, 2.67] Off-line

RMFF [20] [2, 2.23?] Off-line

NF-M [16] ≤ SM→ 2.2837 On-line

FFDUF [17] ≤ 2.0 Off-line

ℜFFDUF
∞ ℜNF M–

∞

ℜA
∞

O n()

O n nlog()

O n()

O n nlog()

www.manaraa.com

17

utilization is very small, i.e., close to zero.

When the release times of all tasks are the same and the task periods obey a binary

distribution, Gonzales and Soh [24] showed that an optimal algorithm exists for it. Let

denote the period of theith task. Then by abinary distribution of task periods, they mean

that if the tasks are ordered in terms of increasing period, then = 2 . The optimal

result can be generalized to include conditions in which tasks are related by = k ,

wherek is an integer.

Though there have been several works in the literature [4, 5, 36, 45] which deal with

allocation algorithms for fault-tolerant systems, they are developed under vastly different

assumptions and are only remotely related to our work. Here we mention several. In order

to tolerate processor failures, Balaji et al [4] presented an algorithm to dynamically distrib-

ute the workload of a failed processor to other operating processors. The tolerance of some

processor failures is achieved under the condition that the task set is fixed, and enough pro-

cessing power is available to execute it. Krishna and Shin [36] proposed a dynamic pro-

gramming algorithm that ensures that backup, or contingency, schedules can be efficiently

embedded within the original, “primary” schedule to ensure that hard deadlines continue to

be met even in the face of processor failures. Unfortunately, their algorithm has the severe

drawback that it is premised on the solution to two NP-complete problems.

Perhaps the most closely related work to ours is that of Bannister and Trivedi [5].

They considered the allocation of a set of periodic tasks to a number of processors so that

a certain number of processor failures can be sustained. All the tasks have the same number

of clones, and for each task, all its clones have the same computation time requirement. An

approximation algorithm is proposed, and the ratio of the performance of the algorithm to

that of the optimal solution, with respect to the balance of processor utilization, is shown

to be bounded by , wherem is the number of processors to be allo-

cated, andr is the number of clones for each task. However, their allocation algorithm does

not consider the problem of minimizing the number of processors used, and the problem of

Ti

Ti 1+ Ti

Ti 1+ Ti

9m() 8 m r– 1+()()⁄

www.manaraa.com

18

how to guarantee the task deadlines on each processor is not addressed. These are very

important considerations which our work addresses.

1.5. Approaches Taken

If we take the timing and fault-tolerant requirements in our scheduling problems as

side conditions and the minimization of the number of processors as the objective function,

then the problems become optimization problems. The available techniques to solve an

optimization problem include graph theory, linear programming, integer programming,

dynamic programming, and approximation. Except for the approximation technique, most

of the techniques are able to find optimal solutions to the scheduling problems. Unfortu-

nately, it may take a considerable amount of time to find the optimal solutions. The approx-

imation technique tends to trade solution accuracy for computation time, i.e., a reasonably

good approximation to the optimal solutions can be obtained by using some simple and fast

algorithms.

The first three problems in Section 1.3 have been proven to be NP-complete. Since

any solutions to an NP-complete problem for optimal results are typically deemed likely to

require exponential time of computation in the worst case, we resort to the approximation

techniques. The approximation algorithms, which are heuristic in nature, are calledheuris-

tics,or heuristic algorithmshenceforth.

Since there are potentially numerous heuristic algorithms to solve a given problem,

we need to find the ones that produce thebest solutions (i.e., solutions which require the

fewest processors). Since a heuristic algorithm cannot be guaranteed to find the optimal

solutions for all inputs, we are therefore interested in knowing how close a heuristic solu-

tion is to an optimal solution. For our problems, the performance measure of a heuristic

algorithm is the number of processors it requires to execute a given task set. Hence a sen-

sible measure is the ratio between the number of processors required by a heuristic and that

by an optimal algorithm. In other words, if we let and denote the number of pro-NA N0

www.manaraa.com

19

cessors required by heuristic A and that by an optimal algorithm, respectively, then we

should develop heuristic algorithms that have a small value of .

As we soon discover, the ratio is not a constant for different sets of input.

This is because a heuristic tends to perform well on some input and poorly on others.

Accordingly, this performance measure is also problematic if we try to compare the perfor-

mance of different heuristics. A solution to this problem is to obtain the mean value of

 under different probabilistic assumptions of input data. Another solution is to find

the maximum value of for any given set of input. The first solution provides us with

insight into the average case behavior of a heuristic, while saying nothing about the worst

case performance of the heuristic. The second solution provides us with the complementary

information. Therefore, in order to effectively evaluate the performance of various heuris-

tics, we will resort to both.

To obtain the average case behavior of the heuristics, one can analyze the algo-

rithms with probabilistic assumptions or conduct simulation experiments. Since a probabi-

listic analysis of our heuristics is beyond the scope of this study, we employ simulation to

gain insight into the average case behavior of the heuristic algorithms.

Our approach to analyze the performance of approximation algorithms for various

scheduling problems can be described as follows: we start with a simple but sensible algo-

rithm and analyze its performance, both by proving bounds (or ratios) on what could hap-

pen in the worst case and by devising examples to verify that these bounds could not be

improved. Then we seek alternative algorithms and analyze them. Our goal is to find algo-

rithms that can provide better performance, i.e., lower worst case performance bounds. In

the following, we give a formal definition of the worst case performance bound (ratio). For

more details on formal description of such performance criteria, please refer to [23].

Let Π be a scheduling problem andI be any given set of tasks for problemΠ. We

define = .

Theworst case performance bound (ratio) for an approximation algorithm A

NA N0⁄

NA N0⁄

NA N0⁄

NA N0⁄

ℜA I()
NA I()
N0 I()

ℜA

www.manaraa.com

20

for problemΠ is given by =inf{r ≥ 1: ≤ r for all instancesI ∈ DΠ}.

For our problems, it suffices to establish the following relation:

≤ c • + d for any setI of tasks, wherec andd are constants.

Sinced becomes insignificant when is large, we let =c, and use to

denote the worst case performance bound for convenience.

In the literature, the measurement = is used frequently to evalu-

ate the performance of heuristics [15, 23]. It is used because there are situations where the

maximum value of is achieved under some pathological cases, mostly when the

size of the input data is small. In order to avoid such pathological cases, the limit of

is used as the worst case performance bound or asymptotic bound instead. For our sched-

uling algorithms, the worst case performance bound defined as is equal to . It is

apparent that can never be smaller than one, and the smaller the value of is, the

better the performance of an algorithm is. We say that an algorithm is aprovably good (or

effective)one if its is known to be upper bounded by a number very close to one.

To obtain , one should presumably know the value of for every task set. This

is obviously impossible since the scheduling problem is NP-complete. The approaches to

obtain therefore depend on the way a heuristic works. Mostly a lower bound of is

used if it is known. In our analysis, we will rely heavily on a technique that uses mapping

functions to relate and to one another.

There are several strong reasons for obtaining the worst case performance bound for

our scheduling heuristics: first, it is a good measurement for comparison of various heuris-

tics. Second, since we are dealing with hard real-time systems, the knowledge about the

worst case performance of the heuristics is crucial to guarantee the timeliness of the sys-

tems. This is particularly important when the heuristic algorithm is an on-line one.

As we have mentioned previously, the general solution to the multiprocessor sched-

uling problems involves two algorithms: one to assign tasks to processors and the other to

schedule tasks on each individual processor. Since our problems of assigning tasks to pro-

ℜA ℜA I()

NA I() N0 I()

N0 I() ℜA
∞ ℜA

∞

ℜA
∞

NA N0⁄
N0 ∞→
lim

NA N0⁄

NA N0⁄

ℜA ℜA
∞

ℜA
∞ ℜA

∞

ℜA
∞

ℜA
∞

N0

ℜA
∞

N0

NA N0

www.manaraa.com

21

cessors bear many similarities with the one-dimensional bin-packing problem, we therefore

try to adapt some of the best bin-packing heuristics to solve our scheduling problems. Many

of the bin-packing heuristics are quite simple, and yet are capable of delivering provably

good performance. The major difference between our scheduling problems and the bin-

packing problem is, however, that the bins in bin-packing have unitary size, while the

“size” or utilization of a processor in our scheduling problems changes dynamically

according to some pre-defined functions. This difference makes the analysis of the worst

case performance of the scheduling heuristics considerably more complicated than that of

bin-packing heuristics. Note that the analysis of bin-packing heuristics is quite complex

even when the sizes of bins are unitary [3, 14, 15, 30, 31, 32, 33, 38, 44, 83].

Since we have chosen to use the rate-monotonic algorithm for guaranteeing task

deadlines on each processor in the first two problems, it seems that the only thing we need

concern ourselves with is the algorithm to allocate tasks to processors, provided that the

condition to schedule tasks on a single processor is known. Since the decision whether a

task can be assigned on a processor is determined by a schedulability condition, the nature

and performance of an allocation algorithm is determined in part by the quality of the con-

dition. For the schedulability conditions reviewed in Section 1.4, the schedulability of a set

of tasks depends not only on the utilization of each task, but also on the number of tasks in

the set. Furthermore, the schedulability of a task set may depend upon the computation time

and period of each individual task, as manifested by the necessary and sufficient condition.

The scheduling problems thus become much more complicated.

The worst case condition (or sufficient condition) of rate-monotonic scheduling has

been presented by Liu and Layland and the necessary and sufficient condition was recently

proven by Lehoczky et al. While the condition given by , wheren is the num-

ber of tasks assigned to a processor, is too conservative in assigning tasks to a processor,

the necessary and sufficient condition is too complicated to be used and analyzed in an allo-

cation scheme. The other conditions also have the weakness of being off-line and ineffec-

n 2
1 n⁄

1– 
 

www.manaraa.com

22

tive.

Our approach to tackling the problems is to develop schedulability conditions that

exhibit good performance while remaining simple enough so that the worst case perfor-

mance analysis is still possible. We then develop several simple allocation algorithms using

the schedulability conditions. In the analysis of the worst case performance, we not only

obtain the upper bounds of the algorithms, but also provide examples which show that the

upper bounds are either tight or nearly tight. The analysis to determine the worst case per-

formance is non-trivial, since our algorithms are more complex than their bin-packing

counterparts, in the sense that the size of a bin is unitary in bin-packing, while the “size” or

utilization of a processor is a variable.

For the FT-EDFMS problem, the schedulability condition is as simple as we can

hope for and our solution to it is quite natural. To obtain the tight performance bound of the

heuristic algorithm is, however, quite involved.

Since most of the non-preemptive scheduling problems are NP-complete, it is rea-

sonable to expect that many cases of our last scheduling problem are also NP-complete.

This is indeed the case, as will be shown later. However, this fact does not make the prob-

lems impossible to deal with, rather it requires us to develop heuristic algorithms to solve

them where the problem instances are NP-complete. We will first prove that a number of

problems are NP-complete and then develop two heuristic algorithms to solve two special

cases of the scheduling problems. Finally, we evaluate their performance through analysis

and simulation.

1.6. Organization

We first present several new schedulability conditions for rate-monotonic schedul-

ing in Chapter 2. Because of the relative importance of the RMMS problem, we devote a

major portion of the work to developing heuristic algorithms to solve it; the results are pre-

sented in Chapter 3. Since the FT-RMMS problem is more general, some of the solutions

www.manaraa.com

23

presented in Chapter 3 may not apply to it. We present one solution to the problem and ana-

lyze the performance of the algorithm in Chapter 4. In Chapter 5, we solve the problem of

supporting fault-tolerance in EDF scheduling on a multiprocessor system by proposing a

provably good heuristic algorithm. The problem of non-preemptive scheduling of tasks to

meet their deadlines even in the presence of processor failures is considered in Chapter 6;

also NP-completeness results and heuristic algorithms are presented. Finally, in Chapter 7,

we summarize our results and discuss future research directions.

www.manaraa.com

24

Chapter 2 Rate-Monotonic Scheduling on a Single Pro-
cessor System

In this chapter, we will first present the task model and review several schedulability

conditions that have been developed. Then we show that the time complexity to test the

schedulability of a set of fixed-priority, periodic tasks using the necessary and sufficient

condition is unbounded with respect to the number of tasks in a set. Accordingly, we

present several new schedulability conditions that are sufficient but are linear in time com-

plexity. Though they are all sufficient conditions, these new conditions have some advan-

tages that others do not have: (1) they are more efficient than the previously derived

sufficient conditions in the sense that the set of task sets that can be scheduled under the

new conditions properly contains the set of task sets that can be scheduled under those pre-

vious conditions. (2) They are simpler than the necessary and sufficient condition in that

each of the conditions can be expressed in a well-formed mathematical function. (3) They

require only linear time complexity for the schedulability testing. Many of the new condi-

tions will be used in the next chapter to develop provably effective scheduling heuristics

for the RMMS problem.

2.1. Task Model

The tasks to be scheduled have the following characteristics:

“A journey of a thousand miles begins with a single step.”
-- Lao Zi, Dao De Jing

www.manaraa.com

25

(1) The requests of each task are periodic, with constant interval between requests.

(2) The deadline constraints specify that each request must be completed before the

next request of the same task occurs.

(3) The tasks are independent in that the requests of a task do not depend on the ini-

tiation or the completion of the requests of other tasks.

(4) Run-time (or computation time) for the request of a task is constant for the task.

Run-time here refers to the time a processor takes to execute the request without

interruption.

Assumption (1) requires that each request of a task must arrive in the system at fixed

interval. This precludes some tasks that need aperiodic processing. Recently, several tech-

niques have been developed to schedule aperiodic tasks together with periodic tasks in a

single processor system [18, 65, 79]. The essence of these techniques is either to reserve

processor utilization for aperiodic tasks by approximating aperiodic task execution with

periodic task execution, or to utilize unused time of periodic tasks for aperiodic task pro-

cessing. Assumption (2) requires that the deadline of a request coincides with the arrival of

the next request. This assumption can be relaxed for uniprocessor scheduling [41].

Assumption (4) basically assumes that all processors are identical.

It follows from the task model that a task is completely defined by two numbers, the

run-time of the requests and the request period. The release time of each task does not affect

the schedulability of a set of tasks [46]. We shall denote a task by the ordered pair (,

), where is the computation time and is the period of the requests. The ratio/

, which is denoted as , is called the utilization (or load) of the task .

As we have mentioned in Chapter 1, the RM algorithm has been proven to be opti-

mal for scheduling a set of fixed-priority, periodic tasks on a single processor. In the fol-

lowing, we offer a brief review on the RM algorithm. For more details, please refer to the

original paper written by Liu and Layland [46].

We define theresponse time of a request for a certain task to be the time span

τi Ci

Ti Ci Ti Ci

Ti ui τi

www.manaraa.com

26

between the request and the end of the response to that request. Acritical instant for a task

is defined to be an instant at which a request for that task will have the largest response time.

Then we have the following theorem [46]:

Theorem 2.1: A critical instant for any task occurs whenever the task is

requested simultaneously with requests for all higher priority tasks.

The implication of this theorem is that if the requests for all tasks at their critical

instants are fulfilled before their respective deadlines by a certain scheduling algorithm,

then the algorithm is feasible. As an example, consider a set of two tasks = (,) =

(1, 2) and = (,) = (1.5, 5). The total utilization of the task set is therefore given

by 1/2 + 1.5/5 = 0.8. If we assign higher priority, then from Figure 2.1(a) we see that

such priority assignment is feasible. Moreover, the value of can be increased at most to

2 but not further. On the other hand, if we let be the higher priority task, then task

misses its deadline at t = 2. The value of needs to be decreased to 0.5 to make such pri-

ority assignment feasible. Therefore, intuitively, assigning a higher priority to a task with a

shorter period (which is what RM does) yields more feasible schedules. The optimality of

such priority assignment can be in fact established as Liu and Layland did in [46].

The following condition, which was given by Liu and Layland [46] and Serlin [68]

and is hereafter referred to as WC (Worst-Case) condition, ensures that a task set can be

scheduled to meet their deadlines by the RM algorithm if the total utilization of the tasks is

less than or equal to , wheren is the number of tasks in the set.

τ1 C1 T1

τ2 C2 T2

τ1

C2

τ2 τ1

C1

1 2 3 4 5

1 2 3 4 5

t

t

τ1

τ2

critical time zone

1 2 3 4 5

1 2 3 4 5

t

t

τ2

τ1

critical time zone

(b)(a)

Figure 2.1: Schedule for Two Tasks

n 2
1 n⁄

1– 
 

www.manaraa.com

27

Condition WC: If a set ofn tasks is scheduled according to the RM algorithm, then

the minimum achievable CPU utilization is . Whenn → ∞, →

.

The WC condition ≤ is a worst case condition, since

there are task sets which are feasible, but cannot be determined to be feasible by the WC

condition. For example, two tasks as given by = (,) = (0.4, 1) and = (,)

= (0.5, 1) are not feasible according to the WC condition, since = 0.9 >

. But they are in fact feasible with the RM algorithm. There are task sets, how-

ever, that actually meet the worst case condition. For example, a task set consists of =

(,) = (, 1) and = (,) = (2 − ,) with =

, where any increase in the value of or will make the task set infeasible.

Another schedulability condition, which is calledIP (Increasing Period), was given

by Dhall and Liu [20] in studying the performance of their multiprocessor scheduling heu-

ristics, RMNF and RMFF.

Condition IP: Let be a set ofn tasks with

 andu = . If u ≤ andCn / Tn ≤

, then the task set can be feasibly scheduled by the RM algo-

rithm. Asn → ∞, the minimum utilization of τn approaches 2 − 1.

This schedulability condition requires that the tasks be sorted in the order of non-

decreasing period, thus implying that the task set should be known beforehand. Some of the

task sets that cannot be scheduled by using the WC condition can be scheduled by using

this condition, since this condition takes advantage of the fact that tasks are ordered against

non-decreasing periods.

Dhall [19] also proved the following results:

Theorem 2.2: Let be a set ofn tasks with

and . If the utilizationu = of the (n − 1) tasks

 is less than or equal to , then

n 2
1 n⁄

1– 
 

n 2
1 n⁄

1– 
 

ln2

Ci Ti⁄
i 1=
n∑ n 2

1 n⁄
1– 

 

τ1 C1 T1 τ2 C2 T2

Ci Ti⁄
i 1=
2∑

2 2
1 2⁄

1– 
 

τ1

C1 T1 2
1 2⁄

1– τ2 C2 T2 2
1 2⁄

2
1 2⁄

Ci Ti⁄
i 1=
2∑

2 2
1 2⁄

1– 
 

C1 C2

τi Ci Ti,()= i 1 2 … n, , ,={ }

T1 T2 … Tn≤ ≤ ≤ Ci Ti⁄
i 1=
n 1–∑ n 1–() 2

1 n 1–()⁄
1– 

 

2 1 u n 1–()⁄+() n 1–()–
1–

e
u–

τi Ci Ti,()= i 1 2 … n, , ,={ }

T1 T2 … Tn≤ ≤ ≤ u1 C1 T1⁄= Ci Ti⁄
i 2=
n∑

τi i 2 3 … n, , ,={ } n 1–() 2 1 u1+()⁄[] 1 n 1–()⁄
1–{ }

www.manaraa.com

28

the given set of n tasks can be feasibly scheduled by the RM algorithm. When n→ ∞,

→ .

Theorem 2.3: Let be a set ofn tasks with

. Let the utilization of the (n− 1) tasks be u =

. If u ≤ and Cn / Tn ≤ ,

then the given set of n tasks can be feasibly scheduled by the RM algorithm.

Lehoczky et al recently obtained the following result, which contains a condition

that is both necessary and sufficient [40]. This condition, which is called theIFF condition,

takes into account of both the computation time and period of a task.

Condition IFF : Let Σ = be a set ofn tasks with

. can be feasibly scheduled by the RM algorithm if and only if =

≤ 1. The entire task setΣ can be feasibly scheduled by the RM

algorithm if and only ifL = ≤ 1, where = {kTj | j = 1,…, i; k = 1,…,

}, = .

2.2. Some Important Lemmas

While the WC condition may be too conservative in assigning tasks to a processor,

the necessary and sufficient condition is too complex to be used and analyzed in an assign-

ment algorithm. In fact, the computational time requirement to test the schedulability of a

set of tasks by using the necessary and sufficient condition is unbounded. In the worst cases,

the time complexity may be more than exponential. This is shown by the following lemma.

Lemma 2.1: The time complexity to use the necessary and sufficient condition is

unbounded. In some cases, the time complexity may be more than exponential.

Proof: This lemma can be proven by constructing the following task set. When the

necessary and sufficient condition is used to test the schedulability of the task set, the com-

putational time requirement is more than exponential.

A set ofn periodic tasksΣ = is given with the fol-

n 1–() 2 1 u1+()⁄[] 1 n 1–()⁄
1–{ } ln 2 1 u1+()⁄()

τi Ci Ti,()= i 1 2 … n, , ,={ }

T1 T2 … Tn≤ ≤ ≤ τi i 1 2 … n 1–, , ,={ }

Ci Ti⁄
i 1=
n 1–∑ n 1–() 2

1 n 1–()⁄
1– 

 
2 1 u n 1–()⁄+[] n 1–()–

1–

τi Ci Ti,()= i 1 2 … n, , ,={ }

T1 T2 … Tn≤ ≤ ≤ τi Li

min t Si∈{ } Wi t()() t⁄()

max 1 i n≤ ≤{ } Li Si

Ti Tj⁄ Wi t() Cj t Tj⁄
j 1=
i∑

τi Ci Ti,()= i 1 2 … n, , ,={ }

www.manaraa.com

29

lowing characteristics:n = , for i = 1, 2,…, n − 1. Then the power ofSn as

defined in the IFF condition is equal to or greater than the following number: +

+ … + n + 1 = . In other words, assuming that the task set is infeasible, we need

to verify an exponential number of equations with respect ton, in order to find out whether

task can be feasibly scheduled with the rest ofn − 1 tasks.

Similar examples that require more than exponential time complexity can be con-

structed. Obviously, the computation time requirement is unbounded and may be more than

exponential. ■

One of the implications of the above lemma is that we need to find schedulability

conditions that are more time-efficient, though they may not be necessary. Before we

present the new conditions, a few lemmas need to be established.

Lemma 2.2: If a task cannot be scheduled together with a set of m≥ 1

tasks by the RM algorithm and ,

then cannot be scheduled together with the same set of tasks

by the RM algorithm.

Proof: Let us denote the task set of with

 as Σ, and the task set of , (C1, T1), (C2, T2), …,

 as . Suppose that for task setΣ, the ith task with 1≤ i ≤ m is the first task to

miss its deadline. Then we claim that if 2T0 ≤ Ti, then theith task misses its deadline in the

task set , otherwise, task misses its deadline.

Since misses its deadline, according to the IFF condition, we have

f(t) = (C0 + C1 + C2 + … + +) / t > 1 (Eq.2.1)

for t ∈S = {kTj | j = 0, 1, 2,…, i; k = 1, 2,…, } = { T0, 2T0, …, q0T0, T1, 2T1, …,

q1T1, T2, …, , 2 , …, , }, where = for x = 0, 1,…, i − 1.

Case 1: 2T0 ≤ Ti. Let us examine the new function: = (2C0 +

C1 + C2 + … + +) / t, for t ∈ = {kTj | j = , 1, 2,…,

i; k = 1, 2,…, } = {2 T0, 4T0, …, 2 T0, T1, 2T1, …, q1T1, T2, …, , 2 ,

Ti 1+ Ti⁄

n
n 1–

n
n 2–

O n
n 1–

 
 

τn

C0 T0,()

τi Ci Ti,()= i 1 2 … m, , ,={ } T0 T≤
1

T2 … Tm≤ ≤ ≤

2C0 2T0,()

τi Ci Ti,()= i 1 2 … m, , ,={ }

τi Ci Ti,()= i 0 1 … m, , ,={ }

T0 T≤
1

T2 … Tm≤ ≤ ≤ 2C0 2T0,()

Cm Tm,() Σ'

Σ' 2C0 2T0,()

Ci Ti,()

t T0⁄ t T1⁄ t T2⁄ Ci 1– t Ti 1–⁄ Ci

Ti Tj⁄

Ti 1– Ti 1– qi 1– Ti 1– Ti qx Ti Tx⁄

f
′

t() t 2T0()⁄

t T1⁄ t T2⁄ Ci 1– t Ti 1–⁄ Ci S
′

0'

Ti Tj⁄ q0' Ti 1– Ti 1–

www.manaraa.com

30

…, , }, where = 2C0 and = 2T0, and = .

Since C0 = 2C0 , we have =f(t) > 1 for t ∈{2T0, 4T0, …,

2 T0}.

We then claim that 2C0 ≥ C0 for t ∈{ T1, 2T1, …, q1T1, T2, …,

, 2 ,…, , }.

Sincet > T0, we writet = wT0 + r, where 0≤ r < T0 andw ≥ 1. If r = 0, then 2

 = 2 ≥ w = . If r > 0, then 2 = 2

≥ . Therefore ≥ f(t) > 1. In other words, task (,) misses its deadline.

Case 2: < 2T0. Let us examine the new function: = (C1 + C2

+ … + + + 2C0) / t, for t ∈ = {T1, T2, …, , , 2T0}.

Since = 2 and = 1 forj = 1, 2,…, i, we have =f(t) > 1 for

t ∈{ T1, T2, …, , }.

 = (2C1 + 2C2 + … + 2 + 2C0) / (2T0)

= (C1 + C2 + … + + C0) / T0 = f(T0) > 1 for t = 2T0.

In other words, task (2C0, 2T0) misses its deadline.

Therefore, the lemma must be true. ■

Lemma 2.2 is very powerful, since it implies that if a task set is infeasible, then there

exists one that is also infeasible with the same task utilizations but with the ratio between

any two task periods less than 2. In deriving schedulability condition, we need only to con-

sider task sets where the ratio between any two task periods is less than 2, since this is the

worst case scenario.

The following lemma is a reiteration of the fact that was used implicitly by Liu and

Layland to derive their worst case condition. Note that since we are considering the unipro-

cessor scheduling, the total utilization of a task set is equivalent to the utilization of the pro-

cessor on which the task set is scheduled. Hence we use the two terms interchangeably.

Lemma 2.3: For a set of n tasksΣ = scheduled

by the RM algorithm on a single processor system, and the restriction that T1 ≤ T2 ≤ … ≤

qi 1– Ti 1– Ti Co' To' q0' Ti 2T0()⁄

t T⁄ t 2T0()⁄ f
′

t()

q0'

t 2T()⁄ t T⁄

Ti 1– Ti 1– qi 1– Ti 1– Ti

t 2T0()⁄ w 2⁄ t T0⁄ t 2T0()⁄ q 2⁄ r 2T0()⁄+

q r T0⁄+ f
′

t() Ci Ti

Ti f
′

t() t T1⁄ t T2⁄

Ci 1– t Ti 1–⁄ Ci t Ti⁄ S' Ti 1– Ti

Tj T0⁄ Tj Ti⁄ f
′

t()

Ti 1– Ti

f
′

t() Ci

Ci

τi Ci Ti,()= i 1 2 … n, , ,={ }

www.manaraa.com

31

Tn < 2T1, the least upper bound of the processor utilization is achieved when =

 for i = 1, 2,…, n − 1 and = 2T1 − Tn.

Proof: Let Σ = be a set ofn tasks withT1 ≤ T2 ≤

… ≤ Tn < 2T1, and , ,…, be the computation times of the tasks that fully utilize

the processor and minimize the processor utilization, i.e.,U = .

Suppose that

 = + ∆, ∆ > 0.

Let

 =

 = + ∆

 =

…

 =

Then , , ,…, also fully utilize the processor. Let = .

Then

U − = (∆ / T1) − (∆ / T2) > 0.

On the other hand, suppose that

 = − ∆, ∆ > 0.

Let

 =

 = − 2∆

 =

…

 =

Then again, , , , …, also fully utilize the processor. Let =

. Then

Ci

Ti 1+ Ti– Cn

τi Ci Ti,()= i 1 2 … n, , ,={ }

C1 C2 Cn

Ci Ti⁄
i 1=
n∑

C1 T2 T1–

C1' T2 T1–

C2' C2

C3' C3

Cn' Cn

C1' C2' C3' Cn' U' Ci' Ti⁄
i 1=
n∑

U'

C1 T2 T1–

C1' T2 T1–

C2' C2

C3' C3

Cn' Cn

C1' C2' C3' Cn' U'

Ci' Ti⁄
i 1=
n∑

www.manaraa.com

32

U − = − (∆ / T1) + (2∆ / T2) > 0.

Therefore, ifU is indeed the minimum processor utilization, then

 =

Similarly we can show that

 = , for i = 2,…, n − 1, and

 = T1 − = 2T1 − Tn

Thus the lemma is proven. ■

2.3. Period-Oriented Schedulability Conditions

In this section, we present several schedulability conditions for the RM algorithm,

which are predominantly oriented towards task periods.

Note that in deriving the schedulability conditions, we want to find out a threshold

number such that at least one task set is infeasible if its total utilization is greater than the

threshold number and feasible if its total utilization is no greater than the threshold number.

The threshold number may be determined by functions of the number of the tasks in the set,

the relative values of the task periods and computation times. Such a threshold number has

been found to be elusive for the necessary and sufficient condition. Yet it is possible for suf-

ficient conditions. Even though we cannot avoid the worst case scenario in all these condi-

tions, we want to find out exactly, or nearly exactly the schedulability conditions that can

successfully determine the feasibility of most of the feasible task sets.

Theorem 2.4: Let be a set ofn tasks. Letγ =

. If γ < 2 and

≤ (n − 1) () + 2/γ − 1, (Eq.2.2)

then the task set can be feasibly scheduled by the RM algorithm. The minimum off(n, γ) =

(n − 1) () + 2/γ − 1 is achieved whenγ = .

Proof: By Lemma 2.2, we can assume without loss of generality that the task peri-

ods satisfy the following relationship:

U'

C1 T2 T1–

Ci Ti 1+ Ti–

Cn Cii 1=
n 1–∑

τi Ci Ti,()= i 1 2 … n, , ,={ }

maxi j,
Ti

Tj

 
 
 

Ci Ti⁄
i 1=
n∑ γ1 n 1–()⁄

1–

γ1 n 1–()⁄
1– 2

1 1 n⁄–

www.manaraa.com

33

T1 ≤ T2 ≤ … ≤ Tn < 2T1.

Let γ = Tn / T1. Henceγ < 2.

Then by Lemma 2.3, the minimum utilization of the task set is achieved when

 = ,

 = ,

…

 = ,

 = T1 − = 2T1 − Tn.

The total utilization of the task set is given by

U = .

RewriteU asU = + (2T1 − Tn) / .

Let for i = 1, 2,…, n − 1. Then / = (2T1 − Tn) / Tn = 2 /

− 1 andTn / T1 = γ = .

U = + 2 / − n.

We need to minimizeU subject to the side conditionγ = . This is achieved

by forming the Lagrangian

L = U + λ [γ −]

and minimizing the function L over ’s, andλ.

 =1 − − λ = 0 for i = 1, 2,…, n − 1. (Eq.2.3)

 = γ − = 0. (Eq.2.4)

Solving thesen equations yields

 = 2/γ + λγ = .

ThereforeU = (n − 1) (− 1) + 2/γ − 1.

Let f(n, γ) = (n − 1) () + 2/γ − 1. Then the functionf(n, γ) is strictly

decreasing inn. To find the minimum off(n, γ) with regard toγ, we take the derivative of

C1 T2 T1–

C2 T3 T2–

Cn 1– Tn Tn 1––

Cn Cii 1=
n 1–∑

Ci Ti⁄
i 1=
n∑

Ti 1+ Ti–() Ti⁄
i 1=
n 1–∑ Tn

xi

Ti 1+

Ti
-----------= Cn Tn xii 1=

n 1–∏
xii 1=

n 1–∏
xii 1=

n 1–∑ xii 1=
n 1–∏

xii 1=
n 1–∏

xii 1=
n 1–∏

xi

xi∂
∂L 2

xi xjj 1=
n 1–∏

-------------------------- xii 1=
n 1–∏ 

  xi⁄

λ∂
∂L

xii 1=
n 1–∏

xi γ1 n 1–()⁄

γ1 n 1–()⁄

γ1 n 1–()⁄
1–

www.manaraa.com

34

the functionf(n, γ) with regard toγ and solve forγ by setting the resultant equation to zero.

We obtainγ = . In other words, the minimum of the function is achieved atf(n, γ) =

(n − 1) () + 2/γ − 1 = (n − 1) () + 2/ − 1 =n(), which

is exactly the result obtained by Liu and Layland.

It is also apparent that the functionf(n, γ) is strictly decreasing with regard toγ

within the range [1,), and increasing within the range (, 2). ■

We plot the functionf(n, γ) = (n − 1) () + 2/γ − 1 in Figure 2.2. It is

evident thatf(n, γ) is strictly decreasing inn. Whenn is large, the increase off(n, γ) in the

range of (, 2) becomes insignificant.

Though the condition given in inequality (2.2) may yield higher utilization, the

requirement that the ratio between any two task periods is less than 2 is too strict. In fact,

that requirement is unnecessary if we take advantage of the result in Lemma 2.2. This is

shown by the two theorems as follows:

Theorem 2.5: Let be a set of n tasks. Define

= − for . Then sort the s in the order of increasing value

2
1 1 n⁄–

γ1 n 1–()⁄
1– 2

1 n⁄
1– 2

1 1 n⁄–
2

1 n⁄
1–

2
1 1 n⁄–

2
1 1 n⁄–

γ1 n 1–()⁄
1–

2
1 1 n⁄–

Figure 2.2: Thef(n, γ) Function

τi Ci Ti,()= i 1 2 … n, , ,={ } Vi

T2 ilog T2 ilog i 1 2 … n, , ,= Vi

www.manaraa.com

35

and rename them to be for . If ≤ +

− n, then the task set can be feasibly scheduled by the RM algorithm.

Proof: Since < 2, we can assert, by exactly the same reasoning as in the proof

of Theorem 2.4, that the minimum total utilization is achieved when

≤ ≤ … ≤ < 2• ,

 = − ,

 = 2• − ,

for i = 1, 2,…, n − 1.

By similar reasoning, we have

U = + (2·• −) / = + − n.

The theorem follows through Lemma 2.2. ■

Theorem 2.6: Let be a set of n tasks. Define

= − for , and

β = − . (Eq.2.5)

If ≤ (n − 1) () + − 1, then the task set can be feasibly

scheduled by the RM algorithm.

Proof: If we minimize the functionU = + − n subject to

the constraints that < 2 and 0≤ ≤ , then the minimum is achieved when

− = β / (n − 1).

Therefore,U = (n − 1) () + − 1. Together with Theorem 2.5, we

have that if ≤ (n − 1) () + − 1, then the task set can be fea-

sibly scheduled by the RM algorithm. ■

Corollary 2.1: Let be a set of n tasks andβ be

defined as in (2.5). If

≤ , (Eq.2.6)

then the task set can be feasibly scheduled by the RM algorithm.

Vi i 1 2 … n, , ,= Ci Ti⁄
i 1=
n∑ 2

Vi 1+ Vi–

i 1=
n 1–∑

2
1 V1 Vn–+

2
Vn

2
V1 2

V2 2
Vn 2

V1

Ci 2
Vi 1+ 2

Vi

Cn 2
V1 2

Vn

2
Vi 1+ 2

Vi– 
 

2
Vi⁄

i 1=
n 1–∑ 2

V1 2
Vn 2

Vn 2
Vi 1+ Vi–

i 1=
n 1–∑ 2

1 V1 Vn–+

τi Ci Ti,()= i 1 2 … n, , ,={ } Vi

T2 ilog T2 ilog i 1 2 … n, , ,=

max1 i n≤ ≤ Vi min1 i n≤ ≤ Vi

Ci Ti⁄
i 1=
n∑ 2

β n 1–()⁄
1– 2

1 β–

2
Vi 1+ Vi–

i 1=
n 1–∑ 2

1 V1 Vn–+

2
Vn Vi Vi 1+

Vi 1+ Vi

2
β n 1–()⁄

1– 2
1 β–

Ci Ti⁄
i 1=
n∑ 2

β n 1–()⁄
1– 2

1 β–

τi Ci Ti,()= i 1 2 … n, , ,={ }

Ci Ti⁄
i 1=
n∑ max ln2 1 βln2–,{ }

www.manaraa.com

36

Proof: Since the worst case condition ≤ is strictly

decreasing with respect ton, we have that

 > = ln2.

Furthermore, (n − 1) () + − 1 >

+ − 1 =βln2 + 2 / − 1> 1− βln2.

Together with Theorem 2.6, we have proven the corollary. ■

We will call the condition in (2.6) thePO (Period-Oriented) condition.

2.4. Utilization-Oriented Schedulability Conditions

Theorem 2.7: Let be a set of tasks and

it can be feasibly scheduled by the RM algorithm. Among the tasks, the utilizations

of 0≤ m≤ tasks are known to be u1, u2, …, um, and the total utilization of the rest of

the tasks is known to beu, i.e., u = . A new taskτn = (Cn, Tn)

can be feasibly scheduled with the tasks on a single processor by the RM algorithm, if

Cn/Tn ≤ (Eq.2.7)

This utilization condition is tight in the sense that there are task sets that actually meet this

condition.

Whenm = 0, the expression in (2.7) becomesCn / Tn ≤ 2

− 1. This condition is the same as the IP condition given by Dhall and Liu, except that tasks

are not necessarily assigned in the order of increasing period. The expression in (2.7) pro-

vides not only just one condition, but in effect, (n − 1) conditions. Most significantly, no

restriction is placed on the relative order of the tasks to be scheduled.

Whenm = n − 1, the expression in (2.7) becomes

Cn / Tn ≤ (Eq.2.8)

We will refer this condition as theUO (Utilization-Oriented) condition.

Ci Ti⁄
i 1=
n∑ n 2

1 n⁄
1– 

 

n 2
1 n⁄

1– 
 

n 2
1 n⁄

1– 
 

n ∞→
lim

2
β n 1–()⁄

1– 2
1 β–

n 1–() 2
β n 1–()⁄

1– 
 

n ∞→
lim

2
1 β–

2
β

τi Ci Ti,()= i 1 2 … n 1–, , ,={ } n 1–

n 1–

n 1–

n m– 1– Ci Ti⁄
i m 1+=
n 1–∑

n 1–

2 1 ui+ 
 

i 1=
m∏

1–
1 u n m– 1–()⁄+[]

n m– 1–()–
1– if m n 1–<

2 1 ui+ 
 

i 1=
m∏

1–
1– if m n 1–=






1 u n 1–()⁄+[] n 1–()–

2 1 ui+()
i 1=
n 1–∏

1–
1–

www.manaraa.com

37

If we minimize the expressionU = over in the UO condition, then

the minimum ofU is achieved whenui = for i = 1, 2, …, n. Thus, U =

n . This is exactly the same condition as given by Liu and Layland. In other

words, the Liu and Layland’s condition is a worst case condition in that it is only achievable

when every task has the same utilization ofui = . If the utilizations of the tasks are

not the same, then the bound for can be significantly higher thann

in some cases under this new condition. For example, ifu1 = 0.6 andu2 = 0.1797, then the

maximum utilization of a task that can be scheduled together with the two tasks according

to the UO condition isCn / Tn ≤ 2/[(1 + u1)(1 + u2)] − 1 = 0.06, while it is impossible to

schedule a third task on the same processor by the WC condition.

If we view the schedulability conditions for the RM scheduling as points on a spec-

trum, then on the one end is the worst-case condition by Liu and Layland and on the other

end is the sufficient and necessary condition by Lehoczky et al. As we move from one end

of the WC condition to the other end of the IFF condition, the schedulability of the condi-

tions increases, as more information of the tasks is taken into account. In the condition

≤ n , only the number of tasks in a set is considered. In expression

(2.7), starting fromm = 0 tom = n − 1, not only the number of tasks in a set is taken into

account, but also the utilization of each individual task. Furthermore, the conditions can be

nicely expressed in well-formed mathematical formula, contrasting the necessary and suf-

ficient condition. The time complexity of all our schedulability conditions remains linear

with respect to the number of the tasks in a set.

Proof of Theorem 2.7: We will obtain the expression in (2.7) through two steps:

one is under the conditionm < n − 1 and the other is under the conditionm = n − 1.

Let us first form a new task set calledΣ, from the taskτn and the set of (n − 1) tasks

 such thatΣ = .

According to Lemma 2.2, we can assume without loss of generality that the periods

of the task set satisfy

Ci Ti⁄
i 1=
n∑ ui

2
1 n⁄

1–

2
1 n⁄

1– 
 

2
1 n⁄

1–

Ci Ti⁄
i 1=
n∑ 2

1 n⁄
1– 

 

Ci Ti⁄
i 1=
n∑ 2

1 n⁄
1– 

 

τi Ci Ti,()= i 1 2 … n 1–, , ,={ } τi i 1 2 … n, , ,={ }

www.manaraa.com

38

 < 2.

We then sort the tasks in the order of the increasing period and rename them appro-

priately such that

T1 ≤ T2 ≤ … ≤ Tn < 2T1.

Then by Lemma 2.3, the minimum utilization is achieved when

 = T2 − T1,

 = T3 − T2,

…

 = Tn − ,

 = T1 − = 2T1 − Tn.

This set of tasks fully utilizes the processor, even though there is an unknown quan-

tity Ci / Ti in the above conditions that has yet to be determined. The unknown quantityCi

/ Ti corresponds to the originalCn / Tn before renaming. LetU = denote the

total utilization of the new task set. Now notice that the above conditions are symmetric in

the sense that if we multiply 2 to the computation time and period of the first task, then

the utilization of each task (and hence the total utilization of then tasks) remains unchanged

and the new task set still fully utilizes the processor. Therefore, by applying the multiplying

rule in no more thann steps, we can arrive at a new task set whereTn is the largest period

among alln tasks, withCn/Tn as the unknown quantity. Furthermore, we can letui =

for i = 1, 2,…, mand u = .

Case 1:m = n − 1. Then

U = = + / ,

whereui = = (Ti+1 − Ti) / Ti = Ti+1 / Ti − 1 for i = 1, 2,…, n − 1.

Let for i = 1, 2,…, n − 1. Then / = (2T1 − Tn)/Tn = 2 /

− 1. Sincexi = ui + 1, we have

 / = 2 / − 1 = 2 − 1.

maxi j,
Ti

Tj

 
 
 

C1

C2

Cn 1– Tn 1–

Cn Cii 1=
n 1–∑

Ci Ti⁄
i 1=
n∑

τ1

Ci Ti⁄

Ci Ti⁄
i m 1+=
n 1–∑

Ci Ti⁄
i 1=
n∑ uii 1=

m∑ Cn Tn

Ci Ti⁄

xi Ti 1+ Ti⁄= Cn Tn

xii 1=
n 1–∏

Cn Tn xii 1=
n 1–∏ 1 ui+()

i 1=
m∏ 

  1–

www.manaraa.com

39

A task set that actually meets this condition is given as follows:

Let T1 = σ > 0. Then = σu1. Hence we have = (1 + ui)Ti = σ

, and = =σ for i = 1, 2,…, n − 2.

Tn = σ , Cn = σ(2 −). In other words, the task set is given

by

(, T1) = (σu1, σ)

(, T2) = (σu2(1 + u1), σ(1 + u1))

…

(,) = (σ , σ)

(, Tn) = (σ(2 −), σ).

Case 2:m < n − 1. The utilization of task is determined at the point where the

total utilization is minimized.

U = = +u + / ,

where ui = = (− Ti) / Ti = / Ti − 1 for i = 1, 2, …, m and u =

.

Let for i = 1, 2,…, n − 1. Then / = (2T1 − Tn)/Tn = 2 /

− 1.

U = + u + 2 / − 1. (Eq.2.9)

ui = xi − 1 for i = 1, 2,…, m. (Eq.2.10)

u = = − (n − m− 1). (Eq.2.11)

To find the minimum, we need to minimize the expression forU as given in equa-

tion (2.9) subject to the side conditions (2.10) and (2.11). This is achieved by first forming

the Lagrangian

L = U + + λ [− (n − m− 1) − u]

and then minimizing the functionL overxi’s, λi’s, andλ. This can be accomplished by first

C1 Ti 1+

1 uj+()
j 1=
i∏ Ci 1+ ui 1+ Ti 1+ ui 1+ 1 uj+()

j 1=
i∏

1 uj+()
j 1=
n 1–∏ 1 uj+()

j 1=
n 1–∏

C1

C2

Cn 1– Tn 1– un 1– 1 uj+()
j 1=
n 2–∏ 1 uj+()

j 1=
n 2–∏

Cn 1 uj+()
j 1=
n 1–∏ 1 uj+()

j 1=
n 1–∏

τn
′

Ci Ti⁄
i 1=
n∑ uii 1=

m∑ Cn Tn

Ci Ti⁄ Ti 1+ Ti 1+

Ci Ti⁄
i m 1+=
n 1–∑

xi Ti 1+ Ti⁄= Cn Tn

xii 1=
n 1–∏

uii 1=
m∑ xii 1=

n 1–∏

Ci Ti⁄
i m 1+=
n 1–∑ xii m 1+=

n 1–∑

λi xi 1– ui–()
i 1=
m∑ xii m 1+=

n 1–∑

www.manaraa.com

40

taking the derivatives ofL overxi’s, λi’s, andλ, respectively, and then solving the resultant

equations after setting them to be zero.

 = λi − = 0, fori = 1, 2,…, m. (Eq.2.12)

 = λ − = 0, fori = m + 1,m + 2,…, n − 1. (Eq.2.13)

 = xi − 1 − ui = 0, fori = 1, 2,…, m. (Eq.2.14)

 = [− (n − m− 1) − u] = 0. (Eq.2.15)

In the following we show how the above equations can be solved to obtain the final

results.

By multiplying the (n − 1) equations in (2.12) and in (2.13) together and manipulat-

ing the resultant equation, we get

 = . (Eq.2.16)

By substituting the in (2.12) and in (2.13) by that in (2.14) and solving

for xi’s, we have

xi = , for i = 1, 2,…, m. (Eq.2.17)

xi = for i = m + 1,m + 2,…, n − 1. (Eq.2.18)

Sincexi = 1 + ui, we have fori = 1, 2,…, m,

1 + ui = (Eq.2.19)

By multiplying them equations in (2.19) together and manipulating the resultant

xi∂
∂L 2

xi xjj 1=
n 1–∏

xi∂
∂L 2

xi xjj 1=
n 1–∏

λi∂
∂L

λ∂
∂L

xii m 1+=
n 1–∑

xjj 1=
n 1–∏ 2

n 1–() n⁄

λ n m– 1–() n⁄ λii 1=
m∏ 

  1 n⁄---

xjj 1=
n 1–∏

2
1 n⁄ λ n m– 1–() n⁄ λii 1=

m∏ 
  1 n⁄

λi
--

2
1 n⁄ λii 1=

m∏ 
  1 n⁄

λ m 1+() n⁄---

2
1 n⁄ λ n m– 1–() n⁄ λii 1=

m∏ 
  1 n⁄

λi
--

www.manaraa.com

41

equation, we get

 = (Eq.2.20)

Since =(n − m− 1) + u = (n − m− 1) , we have

 = (Eq.2.21)

For convenience, we let∆ = and∇ = . With equations

(2.20) and (2.21) together, we can solve forλ:

λ = . (Eq.2.22)

With equations (2.19), (2.21), and (2.22) together we can solve for ’s:

= , for i = 1, 2,…, m.

Then we have

 = . (Eq.2.23)

Now we are ready to solve forxi’s. With equations (2.18), (2.22), and (2.23)

together we obtain

xi = = ∆, for i = m + 1,m + 2,…, n − 1. (Eq.2.24)

Sincexi = 1 + ui for i = 1, 2,…, m, we have

 / = 2 / − 1 = − 1.

In other words, if

 / ≤ − 1,

then the new task set can be feasibly scheduled by the RM algorithm.

If n → ∞, then → − 1.

λi
i 1=

m

∏ 2
m n m–()⁄ λ m n m– 1–()() n m–()⁄

1 ui+()
i 1=
m∏

n m n–()⁄

xii m 1+=
n 1–∑

2
1 n⁄ λii 1=

m∏ 
  1 n⁄

λ m 1+() n⁄---

λi
i 1=

m

∏ λm 1+

2
------------- 1 u n m– 1–()⁄+[] n

1 u
n m– 1–
----------------------+ 1 ui+()

i 1=

m

∏

2

∇∆n m–

λi

λi
2

1 ui+() ∇∆n m– 1–
--

λi
i 1=

m

∏ 2
m

∇m 1+ ∆ n m– 1–() m
--

2
1 n⁄ λii 1=

m∏ 
  1 n⁄

λ m 1+() n⁄---

Cn Tn xii 1=
n 1–∏ 2

∇∆n m– 1–

Cn Tn
2

1 ui+()
i 1=
m∏ 1 u n m– 1–()⁄+[] n m– 1–

--

2 ∇∆n m– 1–
 
 

⁄ 2e
u–

1 ui+()
i 1=
m∏

1–

www.manaraa.com

42

A task set that actually meets this condition is given as follows:

Let T1 = σ > 0. Then = σu1. Hence we have = (1 + ui)Ti =

σ , and = =σ , for i = 1, 2,…, m −

1. = xmTm = σ . = xiTi = ∆Ti = σ , Ci =

− Ti = (∆ − 1) σ , for i = m + 1, m + 2, …, n − 2. Cn = σ(2 −

). In other words, withσ as a variable, the task set is given as

(, T1) = (σu1, σ)

(, T2) = (σu2(1 + u1), σ(1 + u1))

…

(,) = (σum-1 , σ)

(, Tm) = (σum , σ)

(,) = ((∆ − 1)σ , σ)

…

(,) = ((∆ − 1) σ , σ)

(,) = (σ(−), σ)

(, Tn) = (σ(2 −), σ). ■

The following theorem is a generalized version of Theorem 2.2 by Dhall.

Theorem 2.8: Let be a set ofn tasks and =

. If the utilizationu = of the (n − 1) tasks is

less than or equal to , then the given set of n tasks

can be feasibly scheduled by the RM scheduling algorithm. When n→ ∞,

→ .

Proof: This theorem can be proven as the above theorem.

According to Lemma 2.2, we can assume without loss of generality that the task

periods satisfy

Ti / Tj < 2, for i, j = 1, 2,…, n and i�≠ j.

C1 Ti 1+

1 uj+()
j 1=
i∏ Ci 1+ ui 1+ Ti 1+ ui 1+ 1 uj+()

j 1=
i∏

Tm 1+ 1 uj+()
j 1=
m∏ Ti 1+ ∆i m–

1 uj+()
j 1=
m∏

Ti 1+ ∆i m–
1 uj+()

j 1=
m∏

1 uj+()
j 1=
n 1–∏

C1

C2

Cm 1– Tm 1– 1 uj+()
j 1=
m 2–∏ 1 uj+()

j 1=
m 2–∏

Cm 1 uj+()
j 1=
m 1–∏ 1 uj+()

j 1=
m 1–∏

Cm 1+ Tm 1+ 1 uj+()
j 1=
m∏ 1 uj+()

j 1=
m∏

Cn 2– Tn 2– ∆n m– 3–
1 uj+()

j 1=
m∏ ∆n m– 3–

1 uj+()
j 1=
m∏

Cn 1– Tn 1– ∇∆n m– 1– ∆n m– 2– ∆n m– 2–
1 uj+()

j 1=
m∏

Cn ∇∆n m– 1– ∆n m– 1– ∇

τi Ci Ti,()= i 1 2 … n, , ,={ } u1

C1 T1⁄ Ci Ti⁄
i 2=
n∑ τi i 2 3 …… n, , ,={ }

n 1–() 2 1 u1+()⁄[] 1 n 1–()⁄
1–{ }

n 1–() 2 1 u1+()⁄[] 1 n 1–()⁄
1–{ } ln 2 1 u1+()⁄()

www.manaraa.com

43

We then sort the tasks in the order of the increasing period and rename them appro-

priately such that

T1 ≤ T2 ≤ … ≤ Tn < 2T1.

Then by Lemma 2.3, the minimum utilization is achieved when

 = T2 − T1,

 = T3 − T2,

…

 = Tn − ,

 = T1 − = 2T1 − Tn.

This set of tasks fully utilizes the processor, even though there is an unknown quan-

tity, u = in the above conditions that has yet to be determined. Note that the

original unknown quantity, C1 / T1, corresponds to the quantity ofCi / Ti after renaming,

with . Let U = denote the total utilization of the new task set.

Now notice that the above conditions are symmetric in the sense that if we multiply 2 to the

computation time and period of the first task, then the utilization of each task (and hence

the total utilization of then tasks) remains unchanged and the new task set still fully utilizes

the processor. Therefore, by applying the multiplying rule in no more thann steps, we can

arrive at a new task set whereT1 is the shortest period among alln tasks, withC1 / T1 as the

known quantity. Furthermore, we can letui = for i = 2,…, n.

ThenU = = + / =u + u1, whereui = = (

− Ti) / Ti = / Ti − 1 for i = 1, 2,…, n − 1.

Let for i = 1, 2,…, n − 1. Then / = (2T1 − Tn)/Tn = 2 /

− 1.

Sincexi = ui + 1, we have

U = + u1 = u1 + + 2 / [(1 +u1)] − 1

We want to find the minimum ofu = with u1 as a known quantity. This is

C1

C2

Cn 1– Tn 1–

Cn Cii 1=
n 1–∑

Ci Ti⁄
i 2=
n∑

i 1…n[]∈ Ci Ti⁄
i 1=
n∑

τ1

Ci Ti⁄

Ci Ti⁄
i 1=
n∑ uii 2=

n∑ C1 T1 Ci Ti⁄ Ti 1+

Ti 1+

xi Ti 1+ Ti⁄= Cn Tn

xii 1=
n 1–∏

uii 2=
n∑ xi 1–()

i 2=
n 1–∑ xii 2=

n 1–∏
uii 2=

n∑

www.manaraa.com

44

achieved by finding the minimum ofU sinceU = + u1.

To find the minimum ofU, we use the familiar method of taking the derivative of

U overxi and solving forxi the resultant equations when they are set to zero.

 = 1− 2 / [(1 +u1)xi] = 0, for i = 2,…, n − 1. (Eq.2.25)

Through some manipulation of equations (2.25) we obtain that

xi = , for i = 2,…, n − 1. (Eq.2.26)

Therefore, the minimum ofu = is given by

u = + 2 /[(1 +u1)] − 1 = (n − 1){ − 1}

A task set that actually meets the condition is given as follows:

Let = σ > 0. Then = σ . We also let∆ = . Hence

we have = xiTi = σ = σ(1 +) and = = (−

1) = σ(∆ − 1)(1 +) , for i = 1,…, n − 1.

In other words, the task set is given by

(,) = (σ , σ)

(, T2) = (σ(∆ − 1)(1 +),σ(1 +))

…

(,) = (σ(∆ − 1)(1 +) ,σ(1 +))

(, Tn) = (σ(∆ − 1)(1 +) , σ(1 +)). ■

Note that the only difference between Theorem 2.8 and Theorem 2.3 is that in The-

orem 2.8, no restriction is placed on the period of the task whose utilization is known.

2.5. Miscellaneous Schedulability Conditions

In this section, we present two scheduling conditions that explicitly take into

account the relation among task periods. Though these results are not used in this thesis,

they may be useful elsewhere.

Theorem 2.9: For a set of two tasks with fixed priority assignment, the least

uii 2=
n∑

xi∂
∂U

xii 2=
n 1–∏

2 1 u1+()⁄[] 1 n 1–()⁄

uii 2=
n∑

xi 1–()
i 2=
n 1–∑ xii 2=

n 1–∏ 2 1 u1+()⁄[] 1 n 1–()⁄

T1 C1 u1 2 1 u1+()⁄[] 1 n 1–()⁄

Ti 1+ xjj 1=
i∏ u1 ∆i 2–

Ci 1+ ui 1+ Ti 1+ xi 1+

Ti 1+ u1 ∆i 2–

C1 T1 u1

C2 u1 u1

Cn 1– Tn 1– u1 ∆n 3–
u1 ∆n 3–

Cn u1 ∆n 2–
u1 ∆n 2–

www.manaraa.com

45

upper bound to the processor utilization is U = 2(− q), where q = ≤

1, and T1 and T2 are the periods of the two tasks.

Proof: Let and be two tasks with their periods beingT1 andT2 and their run-

time beingC1 andC2, respectively. Assume thatT1 ≤ T2 andT2 = qT1 + r, whereq ≥ 1 and

r ≥ 0. According to the RM algorithm, has higher priority than .

We first claim that the least upper bound of processor utilization is achieved when

C1 = r or C1 = T2 − qT1.

Suppose that the two tasks fully utilize the processor with utilization equal toU =

C1 / T1 + C2 / T2.

If C1 = r + ∆, where 0 <∆ < T1, let us replace by such that =T1 and =

r, and increaseC2 by the amount ofq∆ needed to again fully utilize the processor. This

increase is the time within the critical zone [0,T2] of occupied by but not by . Let

 be the total utilization of such a set of tasks. We have

U − = ∆ / T1 − q∆ / T2 = ∆ / T1T2 (T2 − qT1) ≥ 0.

Therefore,U ≥ .

If C1 = r − ∆, where 0 <∆ < T1, let us replace by such that =T1 and =

r, and decreaseC2 by the amount of (q + 1)∆ needed to again fully utilize the processor.This

decrease is the time within the critical zone [0,T2] of not occupied by but by . Let

 be the total utilization of such a set of tasks. We have

U − = − ∆ / T1 + (q + 1)∆ / T2 = ∆ / T1T2 ((q + 1)T1 − T2) ≥ 0.

Therefore,U ≥ .

Hence the least upper bound of processor utilization is achieved when

U = C1 / T1 + C2 / T2 = C1 / T1 + q(T1 − C1) / (qT1 + C1)

q q 1+() T2 T1⁄

τ1 τ2

τ1 τ2

0 T1 qT1 (q+1)T1

rC1

2T1

T2

Figure 2.3: Relationship betweenT1 and T2.

τ1 τ1
′

T1
′

C1
′

τ2 τ1 τ2

U
′

U
′

U
′

τ1 τ1
′

T1
′

C1
′

τ2 τ1 τ2

U
′

U
′

U
′

www.manaraa.com

46

Let x = C1 / T1, thenU = x + q(1 − x) / (q + x). To minimizeU, we set the first deriv-

ative ofU with respect to x equal to zero and solve the resultant difference equation forx.

We getx = − q. U = 2(− q). ■

Theorem 2.10: For a set of three tasks with fixed priority assignment, the least

upper bound to the processor utilization factor is U = () / qr, where T2 = qT1, T3

= rT1, r = aq + b, and T1, T2, and T3 are the periods of the three tasks, with T1 ≤ T2 ≤ T3.

Proof: SinceT1 ≤ T2 ≤ T3, T2 = qT1, T3 = rT1, r = aq + b, we havea ≥ 1, b≥ 0.

Normalize the periods of the tasks by lettingT1 = 1. The total utilization of the three

tasks areU = C1 / T1 + C2 / T2 + C3 / T3 = C1 + C2 / q + C3 / r. There are two cases to

consider:

Case 1:bC1 + C2 > b. SincebC1 + C2 > b, C3 = aq − aC2 − aqC1.

U = C1 + C2 / q + (aq − aC2 − aqC1) / r

= aq / r + (r − aq)C2 / qr + (r − aq)C1 / r

> aq / r + (r − aq) (b − bC1)/ qr + (r − aq)C1 / r

= () / qr + (r − aq) (q − b) C1 / qr.

Sincer − aq = b ≥ 0 andq − b > 0, U is minimized whenC1 → 0. ThenU =

() / qr.

Case 2:bC1 + C2 ≤ b. SincebC1 + C2 > b, we haveC3 = r − rC1 − (a + 1)C2.

U = C1 + C2 / q + (r − rC1 − (a + 1)C2) / r

= 1 + (b − q)C2 / qr

SincebC1 + C2 ≤ b, thenC2 ≤ b. U is minimized whenC2 = b, sinceb − q < 0.U =

() / qr. ■

q q 1+() q q 1+()

aq
2

b
2

+

aq
2

b
2

+

aq
2

b
2

+

aq
2

b
2

+

www.manaraa.com

47

Chapter 3 Rate-Monotonic Scheduling on a Multipro-
cessor System

In this chapter, we first present some results that are fundamental to rate-monotonic

scheduling on a multiprocessor system. Then we embark on our search for the best heuristic

algorithms for rate-monotonic scheduling on a multiprocessor system, in terms of worst

case performance. At the end of this chapter, we present simulation results on the average

case behavior of various algorithms.

3.1. Fundamental Results of RM Scheduling on Multiprocessor

Theorem 3.1: If a set of tasksΣ = { } cannot be

scheduled on N processors, then the set of tasksΣ = { } given

by

 = • / , = ,and = −

cannot be scheduled on the N processors either.

Proof: Let us define = . For the task setΣ, we select =

 and replace the task = (,) by a new task (2 , 2) if

2 < . Clearly the resulting task set due to this replacement cannot be scheduled

on N processors by Lemma 2.2. Furthermore, the utilization of the task is not

changed. We repeat this process until we arrive at a task set such that 2 > .

τi Ci Ti,()= i 1 2 … n, , ,=

τi' Ci' Ti',()= i 1 2 … n, , ,=

Ci' Ti' Ci Ti Ti' 2
Vi Vi T2 ilog T2 ilog

Tmax maxi Ti() Tmin

mini Ti() τmin Cmin Tmin Cmin Tmin

Tmin Tmax

τmin

Tmin Tmax

“Try your best.”
-- Common Sense

www.manaraa.com

48

Since scaling a task set by any positive number does not change its schedulability

according to the necessary and sufficient condition, we replace every task = (,) by

a task (,) in the task set above. Then we have arrived at a task set

that was to be obtained. ■

Next we answer the question of what the minimum utilization of a set ofn tasks is

such that any set ofn tasks with a smaller utilization is guaranteed to be feasible onn − 1

processors by the RM algorithm. This question is answered in the following two theorems.

The first theorem, first outlined and partially proven by Dhall in his thesis [19], is the key

to the proof of the second theorem. The proof of these two theorems relies heavily on The-

orem 3.1.

Theorem 3.2: If a set of n >1 tasks, each with a utilization less than1/2, cannot

be feasibly scheduled on n− 1 processors by the RM algorithm, then the total utilization of

the set must be greater than .

Proof: Let the set ofn tasks beΣ = { } andui =

< 1/2.

According to Theorem 3.1, we can assume without loss of generality that

≤ ≤ … ≤ < 2 (Eq.3.1)

Since no two of then tasks can be feasibly scheduled together, the following con-

ditions must hold according to the IFF condition.

(Eq.3.2)

Furthermore, sinceui < 1/2, by (3.1), (3.2) we have

 < < … < < 2 (Eq.3.3)

We want to find the minimum ofU = subject to the constraints of

(3.2), (3.3), and (3.4).

 < 1/2 (Eq.3.4)

τi Ci Ti

2
log2Ti–

Ci 2
log2Ti–

Ti

n 1 2
1 n⁄

+ 
 

⁄

τi Ci Ti,()= i 1 2 … n, , ,= Ci Ti⁄

T1 T2 Tn T1

Ci Cj+ Ti>

2Ci Cj+ Tj>



1 i≤ j< n≤

T1 T2 Tn T1

Ci Ti⁄
i 1=
n∑

Ci Ti⁄

www.manaraa.com

49

In order to ensure that the minimum is obtained at some point, we replace “>” by

“≥” in (3.2). This replacement will not affect the minimum.

We proceed in three steps to obtain the minimum ofU:

(1) Fix the values and express = in

terms of in the minimization problem.

(2) Prove that < < … < < 2 if the minimum is achieved and reduce

the minimization problem to a convex minimization problem.

(3) Solve the minimization problem using standard methods.

First, let us assume that is fixed.

Since

 = , (Eq.3.5)

U decreases as we increase. But the increase of cannot exceed the limit that is

imposed by the constraints in (3.2). In other words,U is minimized when

 = . (Eq.3.6)

for i = 1, 2,…, n. Let = . Then the minimization

problem becomes

U = = .

Next we claim that < < … < < 2 if the minimum is achieved.

Suppose that the above claim is false. Then we have either or 2 ≥ Cn.

We will only present the proof to the case of , since the proof to the case of 2

≥ Cn is completely analogous.

If , then we have by the constraints in (3.2) that

2Ci ≥ Ci + ≥ Ti.

Henceui = Ci / Ti ≥ 1/2, which is a contradiction to (3.4).

Therefore, the minimum is achieved when

C C1 C2 … Cn, , ,()= T T1 T2 … Tn, , ,()

C

C1 C2 Cn C1

C C1 C2 … Cn, , ,()=

Ti∂
∂U Ci

Ti
2

-----–

Ti Ti

Ti min 2C1 … 2Ci 1– Ci 1+ … Cn, , , , ,{ } Ci+

mi min 2C1 … 2Ci 1– Ci 1+ … Cn, , , , ,{ }

Ci Ti⁄
i 1=
n∑ Ci Ci mi+()⁄

i 1=
n∑

C1 C2 Cn C1

Ci Ci 1+≥ C1

Ci Ci 1+≥ C1

Ci Ci 1+≥

Ci 1+

www.manaraa.com

50

 = ,

 = 2 ,

for i = 1, 2,…, n − 1.

Accordingly, the minimum ofU = is achieved when

 = + = + ,

 = + = + 2 ,

for i = 1, 2,…, n − 1

This becomes a convex minimization problem.

Finally, we solve the problem by using one of the standard methods.

U = + / (+ 2)

= + / (2 +)

= + 1− 2 / (2 +),

wherebi = for i = 1, 2,…, m − 1 and 2 / = 2 / .

∂U / ∂bi = − 1 / (1 +bi)
2 + 2 / (2 +)2 = 0.

2 (1 +bi)
2 = (2 +)2 (Eq.3.7)

for i = 1, 2,…, n − 1. Then we have

bj (1 +bi)
2 = bi (1 +bj)

2.

Solving these equations yieldsbj = bi = .

Therefore,U = .

This bound is tight in the sense that there are in fact some task sets that actually meet

this condition. One of such task sets is given as follows:

Let ϕ > 0 and Ci = ϕ . ThenTi = ϕ (1 +) for i = 1, 2,…, n. ■

Next we prove that the result given in Theorem 3.2 holds for any task set.

Theorem 3.3: If a set of n >1 tasks cannot be feasibly scheduled on n− 1 pro-

cessors by the RM algorithm, then the total utilization of the set must be greater than

.

mi Ci 1+

mn C1

Ci Ti⁄
i 1=
n∑

Ti Ci mi Ci Ci 1+

Tn Cn mn Cn C1

Ci Ci Ci 1++()⁄
i 1=
n 1–∑ Cn Cn C1

1 1 bi+()⁄
i 1=
n 1–∑ bii 1=

n 1–∏ bii 1=
n 1–∏

1 1 bi+()⁄
i 1=
n 1–∑ bii 1=

n 1–∏
Ci 1+ Ci⁄ C1 Cn bii 1=

n 1–∏
bij 1 j i≠,=

n 1–∏ bii 1=
n 1–∏

bij 1 j i≠,=
n 1–∏ bii 1=

n 1–∏

2
1 n⁄

n 1 2
1 n⁄

+ 
 

⁄

2
i n⁄

2
i n⁄

2
1 n⁄

n 1 2
1 n⁄

+ 
 

⁄

www.manaraa.com

51

Proof: In Theorem 3.2, we have proven that if the utilization of each of then tasks

is less than 1/2, then the total utilization must be greater than .

We will prove that the bound of is indeed the minimum for any task

set by method of contradiction.

Suppose that a lower bound than is achieved with a set ofn tasks,

in which 0 <k < n of them have utilizations equal to or greater than1/2. Then there aren −

k tasks each of whose utilizations is less than 1/2.

Since then − k tasks cannot be scheduled onn − k − 1 processors and each of them

has a utilization less than1/2, we have > by Theorem

3.2.

Since ≥ + k/2 > , it contra-

dicts the assumption that a lower bound is achieved when some of the task utilizations is

equal to or greater than 1/2. Therefore, the theorem must be true. ■

3.2. Scheduling Heuristics and Their Worst Case Performance Analysis

With the task model as described in Chapter 2, the problem of scheduling a set of

periodic tasks on a multiprocessor system such that task deadlines are met on each proces-

sor by the RM algorithm can be described as follows:

Given a set ofn tasksΣ = , what is the minimum

number of processors required to execute then tasks such that their deadlines are met by

the RM algorithm on each individual processor?

Various scheduling heuristics can be developed to solve this problem. One set of

heuristic algorithms to solve this problem can be formed by combining any of the bin-pack-

ing heuristics with any of the schedulability conditions for the RM algorithm. This set of

algorithms can be described as follows:

A = ,

whereNF, FF, BF, FFD, BFD are bin-packing heuristics andWC, IFF, IP, UO are the

n 1 2
1 n⁄

+ 
 

⁄

n 1 2
1 n⁄

+ 
 

⁄

n 1 2
1 n⁄

+ 
 

⁄

uii 1=
n k–∑ n k–() 1 2

1 n k–()⁄
+ 

 
⁄

uii 1=
n∑ n k–() 1 2

1 n k–()⁄
+ 

 
⁄ n 1 2

1 n⁄
+ 

 
⁄

τi Ci Ti,()= i 1 2 …… n, , ,={ }

NF FF BF FFD BFD …, , , , ,{ } WC IFF IP UO …, , , ,{ }×

www.manaraa.com

52

schedulability conditions for the RM algorithm.

For example, the Rate-Monotonic-Next-Fit (RMNF) algorithm proposed by Dhall

and Liu can be categorized as RMNF-IP and their Rate-Monotonic-First-Fit (RMFF) as

RMFF-IP, since the IP condition is used.

In order to show how the worst case performance bound is generally derived for the

scheduling heuristic algorithms, we present an algorithm called the Rate-Monotonic-Next-

Fit-WC (RM-NF-WC) using the WC condition for the RMMS problem.

The RM-NF-WC algorithm is given in Figure 3.1.

When the algorithm finishes,m is the number of processors required to execute a

given set of tasks.

If we let N andN0 be the number of processors required by RM-NF-WC and the

minimum number of processors required to feasibly schedule a given set of tasks, respec-

tively, then we want to find the worst case performance bound of RM-NF-WC, i.e.,

. If we can prove that ≤ α, then we say that the performance

of RM-NF-WC is upper bounded byα. If we show that ≥ α, usually by con-

structing some task sets, then we say that the performance of RM-NF-WC is lower bounded

by α. If we prove both conditions, then we can conclude that = α, i.e, the

algorithm RM-NF-WC has a tight bound ofα.

The general approach to prove the tight bound for a heuristic algorithm involves

two procedures that must be performed simultaneously: on the one hand, we should try to

Rate-Monotonic-Next-Fit-WC (RM-NF-WC) (Input: task setΣ; Output:m)

(1). i := 1; m := 1; /* i denotes the ith task, m the number of
processors allocated */

(2). Assign task to processor if this task together with the
tasks that have been assigned to can be feasibly scheduled
on according to the WC condition. If not, assign task to

 and set m = m + 1.
(3). If i < n, then i := i + 1 and go to (2) else stop.

τi Pm
Pm

Pm τi
Pm 1+

Figure 3.1: Algorithm RM-FF-WC

ℜRM NF– WC–
∞ ℜRM NF– WC–

∞

ℜRM NF– WC–
∞

ℜRM NF– WC–
∞

www.manaraa.com

53

find patterns of input that will result in the worst case performance for the algorithm. On

the other hand, we should try to lower the upper bound by analytic reasoning. There may

be many alternations between the two procedures before the final tight bound is obtained.

The lack of either effort will make a solution incomplete. Although this process of obtain-

ing the tight bound for an algorithm may be a long one, as it is the case for many of our

algorithms, we will not describe the process in this thesis, since finding a bound is one mat-

ter; presenting it may be an entirely different matter.

Next we show that the worst case performance of RM-NF-WC is upper bounded by

2 / ln2. Then for any number of processors in an optimal schedule, a task set is constructed

that results in the nearly upper bounded number of processors required by RM-NF-WC.

Theorem 3.4: Let N and be the number of processors required by RM-NF-

WC and the minimum number of processors required to feasibly schedule a given set of

tasks, respectively. Then N≤ + 1 ≈ .

Proof: For a processorPj, let be the tasks that have been assigned to

it and be the first task assigned to processor . According to the WC condition,

we have

 + > > ln2. (Eq.3.8)

Let = for .

Since for , we have

(Eq.3.9)

from inequality (3.8).

Summing up theN − 1 inequalities in (3.9) yields − U1 − UN > (N − 1)

ln2. In other words, +U1 + UN > (N − 1)ln2.

Since , we have .

Therefore, ³≤ 2 / ln2. ■

Theorem 3.5: Let and be the number of processors required by RM-NF-

N0

2 ln2()⁄() N0 2.88N0 1+

τ1 τ2 … τs, , ,

τs 1+ Pj 1+

ukk 1=
s∑ us 1+ s 1+() 2

1 s 1+()⁄
1–

Uj ukk 1=
s∑ 1 j N≤ ≤

Uj 1+ us 1+≥ 1 j N 1–≤ ≤

Uj Uj 1++ ln2>

2 Ujj 1=
N∑

2 Ujj 1=
N∑ N 1–() ln2>

N0 Ujj 1=
N∑≥ N 2 ln2()⁄() N0 1+≤

ℜRM NF– WC–
∞

N N0

www.manaraa.com

54

WC and the minimum number of processors required to feasibly schedule a given set of

tasks, respectively. Then ≥ 2.87.

Proof: Let K be a positive integer divisible by 7, i.e.,K = 7m, wherem is a natural

number and letδ be a very small positive number such thatδ = , wheren is a very large

positive integer andε is a very small positive number. The relationship betweenn andε is

given as follows: given any small numberδ, n is chosen large enough andε small enough

such that ln2 + ≥ andδ = .

The set of tasks consists of two sets of task groups, with the numbers of groups

equal to 20K/7 in the first set, and in the second set, whereα = 1 −

5(ln2 − 1/2) = 0.034264. In terms ofm, the number of task groups in the first set is given

by 20m and the number of task groups in the second set is given by . In the

first set of task groups, it consists of10m pairs of task groups, each of which has(n + 1)

tasks. Note that in the(x, y) notation,x andy denote the computation time and the period

of a task, respectively. A pair of task groups is given by

In the second set of groups, it has groups, each of which has 20 tasks,

as given by

In the RM-NF-WC schedule, the first set of task groups uses 20m processors, since

ln2 − 1/2 + + 1/2 > , as illustrated by Figure 3.2. The second set of task

groups uses processors in total, since 20() + () ≈ 0.719 −

 > 20 ≈ 0.705, for smallδ.

ℜRM NF– WC–
∞

nε

nε n 2
1 n⁄

1– 
 

nε

14K() 7⁄() 20⁄

2m() 20⁄

10m

ln2 1 2⁄– 1,() ε 1,() … ε 1,(), ,,

n

1 2⁄ 1,() ε 1,() … ε 1,(), ,,

n





         

        

2m() 20⁄

2m() 20⁄
α 10δ– 1,() … α 10δ– 1,(), ,

20



            

nε n 2
1 n⁄

1– 
 

2m() 20⁄ α 10δ– α 10δ–

210δ 2
1 21⁄

1– 
 

www.manaraa.com

55

In the optimal schedule, the10m tasks each with utilization factor of1/2 can be

scheduled using 5m processors. The10m tasks each with utilization factor ofln2 and the

20mn tasks each with utilization factor ofε can be scheduled on 2m processors, with a total

utilization of 2m() left unused for the 2m processors. This amount of utilization,

i.e., 2m(), is used to execute the task groups in the second set, since

() 20 < 2m().

Therefore, the total number of processors required by an optimal algorithm isN0 =

5m + 2m = 7m, while the total number of processors required by RM-NF-WC isN = 20m

+ . The performance bound is thus given by

 = ≥ 2.87, for .

Hence ≥ 2.87.

Since ≤ 2.88, from Theorem 3.4, it is concluded that the bound is

nearly tight. ■

3.3. Rate-Monotonic-First-Fit

In assigning tasks to processors, RM-NF-WC only checks the current processor to

see whether a task together with those tasks that have already been assigned on it can be

feasibly scheduled or not. If not, the task must be scheduled on an idle processor, even

though the task may be scheduled on those processors previously used. To overcome this

waste of processor utilization, we develop an allocation algorithm, RMFF, which always

Figure 3.2: RM-NF-WC vs. Optimal Schedules

δ

ln2−0.5 ln2−0.5

(a) RMNF-WC Schedule

ln2−0.5

ln2−0.5

ln2−0.5

ln2−0.5

(b) Optimal schedule

α−10δ

1

0
processor
utilization

Idle

Busy

α

0.5

δ

δ

ln2−0.5

δ

0.5
0.5

α−10δ

0.5

0.5

α 10δ–

α 10δ– 2m() 20⁄

α 10δ– α 10δ–

2m() 20⁄
N
N0
------ 20m 2m 20⁄+

7m
--- m ∞→

ℜRM NF– WC–
∞

ℜRM NF– WC–
∞

www.manaraa.com

56

checks the feasibility of a task from the first processor to the one on which the task can be

scheduled. Note that we will instead use the new condition, the UO condition in RM-FF.

The Rate-Monotonic-First-Fit (RM-FF) is designed as follows: let the processors be

indexed asP1, P2, …, with each one initially in the idle state, i.e., with zero utilization. The

tasksτ1, τ2, …, τn will be scheduled in that order. To scheduleτi, find the leastj such that

taskτi, together with all the tasks that have been assigned to processor Pj, can be feasibly

scheduled according to the UO condition for a single processor, and assign taskτi to Pj.

To describe RM-FF in a more algorithmic format, let and denote the number

of tasks that have already been assigned to processorPj so far and the total utilization of

the tasks, respectively. Note that denotes the utilization of taskτi and denotes the

utilization of thejth task assigned to processorPi. The RM-FF algorithm is given in Figure

3.3.

When the algorithm terminates,m is the number of processors required by RM-FF

to schedule the given set of tasks. The RM-FF algorithm has the following distinguished

property: No incoming task is assigned to an idle processor unless it cannot be assigned to

any processor that has already been assigned some tasks. We will implicitly use this prop-

erty throughout the analysis. In order to obtain the worst case bound, we need some lem-

mas.

Lemma 3.1: In the completed RM-FF schedule, if n tasks cannot be feasibly

scheduled on n− 1 processors, then the total utilization of the n tasks is greater than

kj Uj

kj ui ui j,

Rate-Monotonic-First-Fit (RM-FF) (Input: task setΣ; Output:m)

(1) i := 1; m := 1;
(2) j := 1; While (>) Do {j := j + 1;} ;
(3) := + 1; := + ; /* Assign task τi to P j */
(4) If (j > m) Then { m := j ;}
(5) i := i + 1;
(6) If (i > n) Then {Stop;} Else {Goto 2;}

ui 2 uj l, 1+()
l 1=

kj∏ 
 ⁄ 1–

kj kj Uj Uj ui

Figure 3.3: Algorithm RM-FF

www.manaraa.com

57

 = .

Proof: The proof is by induction.

(1) n = 2. Supposeu1 andu2 are the utilizations of two tasks which cannot be sched-

uled on a processor according to the UO condition, i.e.,u2 > − 1. u1 + u2 = u1

+ − 1. To find the minimum off(u1) = u1 + − 1, we take the

derivative of the functionf(u1), and solve foru1 after setting the resultant equation to zero.

The minimum off(u1) is achieved whenu1 = . Thereforeu1 + u2 > 2().

(2) Suppose the lemma is true for , i.e.,

 > . (Eq.3.10)

Then when , the(k + 1)th task cannot be scheduled to any of thek pro-

cessors. According to RM-FF,

 for . (Eq.3.11)

Summing up the abovek inequalities yields

 + > (Eq.3.12)

Multiplying k − 1 on both sides of inequality (3.10) yields

(k − 1) > (k − 1) (Eq.3.13)

Adding up inequalities (3.12) and (3.13) and dividing the new inequality on both

sides byk yields > . Therefore the lemma follows. ■

Lemma 3.2: In the completed RM-FF schedule, among all the processors on

which n≥ c ≥ 1 tasks are assigned, there is at most one processor with a utilization no

greater than .

Proof: The lemma is proven by contradiction. Suppose there are two processors

each of which has a utilization no greater than , and letPa andPb be the

two processors andni be the number of tasks assigned to processorPi with ni ≥ c, a < b,

andi = a, b. Letui,j be the utilization of thejth task that is assigned to processorPi for i =

n 1 2
1 2⁄

+ 
 

⁄ n 2
1 2⁄

1– 
 

2 1 u1+() 1–

2 1 u1+() 1–
2 1 u1+() 1–

2
1 2⁄

1– 2
1 2⁄

1–

n k=

uii 1=
k∑ k 2

1 2⁄
1– 

 

n k 1+=

ui uk 1+ 2 2
1 2⁄

1– 
 

>+ 1 i k≤ ≤

uii 1=
k∑ kuk 1+ 2k 2

1 2⁄
1– 

 

uii 1=
k∑ k 2

1 2⁄
1– 

 

uii 1=
k 1+∑ k 1+() 2

1 2⁄
1– 

 

c 2
1 c 1+()⁄

1– 
 

c 2
1 c 1+()⁄

1– 
 

www.manaraa.com

58

a, band 1≤ j ≤ ni. Then ≤ for i = a, b.

If there exists a numberx such that1 ≤ x ≤ nb andub,x≥ , then there

must exist a task with a utilizationub,y ≤ , since there are totallynb ≥ c tasks

on processorPb and ≤ , wherex ≠ y and 1≤ y ≤ nb. In other

words, there exists a taskτb,z on processorPb such thatub,z ≤ and

.

Since + ub,z ≤ + = ()

, ub,z can be assigned on processorPa. This is a contradiction to the way

RM-FF assigns tasks to processors. Therefore the lemma must be true. ■

Theorem 3.6: Let N and N0 be the number of processors required by RM-FF and

the minimum number of processors required to schedule a given set of tasks, respectively.

Then N≤ [/]N0 + 1 ≈� 2.33N0 + 1. ≤ 2.33.

In order to prove the above bound, we define a weighting function that maps the uti-

lization of a task to a value in the interval of (0, 1] as follows:

, wherea = .

We call that value the weight of the task and the sum of the weights of the tasks

assigned to a processor the weight of the processor. The weighting function is designed in

such a way that except for some bounded number of processors, the weight of every pro-

cessor in the RM-FF schedule is equal to or greater than1. At the meantime, the weight of

a processor in the optimal schedule is no greater than1/a. We first prove that weight of a

processor in the optimal schedule is no greater than1/a. Then we prove that with few

exceptions, the weight of every processorP in the completed RM-FF schedule is equal to

or greater than1, i.e.,W(P) = ≥ 1, wherek is the number of tasks assigned

to the processor.

Lemma 3.3: If a processor is assigned a number of tasks , with uti-

lizations , then , where a = .

Proof: If u1 ≥ a, thenu2 < a,since a≈ 0.52. = W(u1) +

ui j,j 1=

ni∑ c 2
1 c 1+()⁄

1– 
 

2
1 c 1+()⁄

1– 
 

2
1 c 1+()⁄

1– 
 

ub j,j 1=

nb∑ c 2
1 c 1+()⁄

1– 
 

2
1 c 1+()⁄

1– 
 

z 1 2 … nb, , ,{ }∈

ui j,j 1=

na∑ c 2
1 c 1+()⁄

1– 
 

2
1 c 1+()⁄

1– 
 

c 1+

2
1 c 1+()⁄

1– 
 

2 3 2
3 2⁄

– 
 

+ 2
4 3⁄

2– 
 

ℜRM FF–
∞

W u()
u a⁄ 0 u a< <
1 a u 1≤ ≤

{= 2 2
1 3⁄

1– 
 

W ui()
i 1=
k∑

τ1 τ2 … τm, , ,

u1 u2 … um≥≥≥ W ui()
i 1=
m∑ 1 a⁄≤ 2 2

1 3⁄
1– 

 

W ui()
i 1=
m∑ W ui()

i 2=
m∑

www.manaraa.com

59

= 1 + () / a ≤ 1 + (1 − a) / a= 1 / a. Otherwise (u1 < a), then =

 / a ≤ 1 / a. ■

Lemma 3.4: Suppose tasks are assigned to processors according to RM-FF. If a

processor is assigned m≥ 2 tasks and ≥ , then ,

where are utilizations of the m tasks that are assigned to it.

Proof: Since ≥ , we either haveu1 ≥ a or u1 < a. If u1 ≥ a,

then according to the definition of weighting function. Otherwise,

 = / a > 1, sincea = . ■

Proof of Theorem 3.6: Let Σ = { } be a set ofm tasks, with their uti-

lizations andϖ = . By Lemma 3.3,ϖ ≤ N0 / a, wherea =

.

Suppose that among theN processors that are used by RM-FF to schedule a given

setΣ of tasks,L of them have with > 0, wherej ranges over all

tasks in processori among theL processors. Let us divide these processors into two differ-

ent classes:

(1) Processors to each of which only one task is assigned. Suppose there aren1 of

them.

(2) Processors to each of which two or more tasks are assigned. Letn2 denote the

number of processors in this class. According to Lemma 3.2, there is at most one

processor whose utilization in the RM-FF schedule is no greater thana =

. Thereforen2 ≤ 1.

Obviously,L = n1 + n2. For each of the restN − L processors, ≥ 1, where

j ranges over all tasks in a processor.

For the processors in class (1), > n1(− 1) according to Lemma 3.1.

Since < 1, we must have < a. Hence >n1 (− 1) / a.

Moreover, according to Lemma 3.2, there is at most one task whose utilization is no greater

than (− 1). In the optimal assignment of these tasks, the optimal numberN0 of pro-

uii 2=
m∑ W ui()

i 1=
m∑

uii 1=
m∑

uii 1=
m∑ 2 2

1 3⁄
1– 

 
W ui()

i 1=
m∑ 1≥

u1 u2 … um≥≥≥ τ1 τ2 … τm, , ,

uii 1=
m∑ 2 2

1 3⁄
1– 

 

W ui()
i 1=
m∑ 1≥

W ui()
i 1=
m∑ uii 1=

m∑ 2 2
1 3⁄

1– 
 

τ1 τ2 … τm, , ,

u1 u2 … um, , , W ui()
i 1=
m∑

2 2
1 3⁄

1– 
 

W uj()
j∑ 1 βi–= βi

2 2
1 3⁄

1– 
 

W uj()
j∑

uii 1=

n1∑ 2
1 2⁄

W ui()
i 1=

n1∑ ui W ui()
i 1=

n1∑ 2
1 2⁄

2
1 2⁄

www.manaraa.com

60

cessors used cannot be less thann1 /2, i.e.,N0 ≥ n1/ 2, since possibly with one exception,

any three tasks among these tasks cannot be scheduled on one processor.

Now we are ready to find out the relationship betweenN andN0.

ϖ = ≥ (N − L) + n1 (− 1) / a = N − n1 − n2 + n1 (− 1) / a

= N − n1(1 − (− 1) / a) − n2

≥ N − 2N0(1 − (− 1) / a) − n2, wherea = .

Sinceϖ ≤ N0 / a by Lemma 3.3,

N0 / a ≥ N − 2N0(1 − (− 1) / a) − n2 ≥ N − 2N0(1 − (− 1) / a) − 1.

Therefore,N ≤ [2 + (3−) / a] N0 + 1. ■

Having proven the upper bound for RM-FF, we construct a task set which, when

scheduled by RM-FF, requires nearly the same upper bounded number of processors. This

theorem also serves as a counter example for the claim that Dhall and Liu’s RMFF is upper

bounded by 2.23 in [20]. Since the tasks in each group has the same utilization and to show

the incorrectness of the upper bound for RMFF in [20], we use the condition,Cn / Tn ≤

2 − 1, instead of the conditionCn / Tn ≤ 2/ ,

without affecting the final result.

Theorem 3.7: Let N and N0 be the number of processors required by RM-FF and

the minimum number of processors required to feasibly schedule a given set of tasks,

respectively. Then

≥ 2.2833 …

Proof: The proof consists of constructing a task set such that RM-FF exhibits the

worst case performance when it is used to schedule the task set.

Let n = 120k with k ≥ 1. The task set is given as follows: There aren tasks, each

with a utilization ofu1 = + ε, whereε > 0 is a small number. For our construction,

it suffices to letε < 0.00006. Next comen tasks, each with a utilization ofu2 = +

ε. Finally, there are 2n tasks, each with a utilization ofu3 = + ε.

When this task set is scheduled by RM-FF, the firstn tasks will use pro-

W ui()
i 1=
m∑ 2

1 2⁄
2

1 2⁄

2
1 2⁄

2
1 2⁄

2 2
1 3⁄

1– 
 

2
1 2⁄

2
1 2⁄

2
3 2⁄

1 u n 1–()⁄+[] n 1–()–
ul 1+()

l 1=
n 1–∏ 

  1–

ℜRM FF–
∞

2
1 31⁄

1–

2
1 5⁄

1–

2
1 2⁄

1–

n 30⁄

www.manaraa.com

61

cessors, since +ε > 2 − 1. The nextn tasks

will take up processors, since +ε > 2 − 1.

The last 2n tasks will take up 2n processors for similar reason. Thus, the total number of

processors allocated for this task set by RM-FF isN = 2n + + = 274k.

For the optimal schedule, each processor is assigned four tasks and totallyn proces-

sors are required. For each processor, it is assigned two tasks each with a utilization of

(+ε), one task of (+ε), and one task of (+ε), since 2(

+ ε) + (+ε) + (+ε) < 1 for ε < 0.00006. Therefore, =n = 120k.

ThenN / N0 = 274k / (120k). The bound of RM-FF satisfies

 = 274k / (120k) ≥ 2.2833 ■

The bounds for RM-FF were derived under the general assumption that the utiliza-

tion of a task can take any value between zero and one. If the utilization of a task is small

compared to the processing power of a processor, we show that the worst case performance

of RM-FF can be significantly improved.

Let α be the maximum allowable utilization of a task, i.e.,α = . Then

we have the following theorem.

Theorem 3.8: Let N and N0 be the number of processors required by RM-FF and

the minimum number of processors required to feasibly schedule a given set of tasks,

respectively. Ifα = andα ≤ − 1, then

2
1 31⁄

1– 1 30 2
1 31⁄

1– ε+ 
 

 
 

30⁄+ 
  30–

n 4⁄ 2
1 5⁄

1– 1 4 2
1 5⁄

1– ε+ 
 

 
 

4⁄+ 
  4–

n 4⁄ n 30⁄

u2 u2
u3 u3

Assignment Direction
u2

u2

u2

u2

u2

u2

u3

u3

u2

u1

(b) Optimal Schedule

Figure 3.4: RM-FF vs. Optimal Schedules

u1

u1
u1

u1

u1
u1

Idle

Busy

(a) Schedule by RM-FF

2
1 2⁄

1– 2
1 5⁄

1– 2
1 31⁄

1– 2
1 2⁄

1–

2
1 5⁄

1– 2
1 31⁄

1– N0

ℜRM FF–
∞

maxi Ci Ti⁄()

max1 i n≤ ≤ ui{ } 2
1 1 c+()⁄

www.manaraa.com

62

≤ 1 / [(c + 1)(− 1)] for c = 0, 1, 2, …

When c→ ∞, [(c + 1)(− 1)] → ln2. Then ≤ 1/ ln2. The upper

bounds of RM-FF with regard toα are given in Table 3.1 for a few values ofα.

Proof: For any set ofn tasks, let be the total utilization of the task set.

According to RM-FF, if α ≤ − 1, then each processor must be assigned at least

(c + 1) tasks since (c + 1)α ≤ (c + 1) [− 1] except possibly for the last processor.

According to Lemma 3.2, among all the processors to each of which at least (c + 1) tasks

are assigned, there is at most one processor whose utilization is no greater than (c + 1)

[− 1], for c = 0,1, 2,… Since (N − 2){(c + 1) [− 1]} ≤ ≤ N0,

we have

N ≤ N0 + 2(c + 1) [− 1].

Hence, ≤ 1 / [(c + 1)(− 1)], for c = 0, 1, 2,…

Whenc → ∞, [(c + 1)(− 1)] → ln2. Then ≤ 1/ ln2. ■

For future reference, we also prove the following lemma here.

Lemma 3.5: Suppose that in the RM-FF schedule, there are n processors on each

of which exactly m≥ 1 tasks are assigned. Then > for n >

m, where is the total utilization of the m tasks assigned to processor Pi. If n ≤ m, then

 > − (m + 1 − n) .

Proof: Let us index then processors from1 to n according to the order in which

they are assigned tasks in the completed RM-FF schedule. According to Lemma 3.2, there

is at most one processorPi with ≤ amongn processors.

If i < n, then we can assume that = − ∆, where∆ >

0. For each task on the last processorPn, its utilization satisfied:

Table 3.1: Worst Case Performance Bounds of RM-FF underα

α ≥ 0.4142 < 0.4142 < 0.2599 < 0.1892 < 0.1487 < 0.02

2.33 1.92 1.76 1.68 1.63 1.47

ℜRM FF–
∞ α() 2

1 2 c+()⁄

ℜRM FF–
∞ α()

2
1 2 c+()⁄ ℜRM FF–

∞ α()

uii 1=
n∑

2
1 1 c+()⁄

2
1 1 c+()⁄

2
1 2 c+()⁄

2
1 2 c+()⁄

uii 1=
n∑

2
1 2 c+()⁄

ℜRM FF–
∞ α() 2

1 2 c+()⁄

2
1 2 c+()⁄ ℜRM FF–

∞ α()

Uii 1=
n∑ nm 2

1 m 1+()⁄
1– 

 

Ui

Uii 1=
n∑ nm 2

1 m 1+()⁄
1– 

 
m 2

1 m⁄
2

1 m 1+()⁄
– 

 

ui k,k 1=
m∑ m 2

1 m 1+()⁄
1– 

 

ui k,k 1=
m∑ m 2

1 m 1+()⁄
1– 

 

www.manaraa.com

63

u > −

= − + ∆ = + ∆.

Then the total utilization of processorPn is given by

≥ mu > + m∆.

Since each processor has a utilization greater than for the rest of

n − 2 processors, > (n − 2) + + m∆ +

− ∆ = + (m − 1)∆ ≥ .

If i = n, then suppose the least total utilization among the rest of (n − 1) processors

is = +∆, where∆ > 0. Then for each task on processorPn,

u > −

= − − ∆ = − ∆.

Then the total utilization of processorPn is given by

≥ mu > − m∆.

Since each processor has a utilization greater than or equal to

+ ∆ for the firstn − 1 processors, we have

 > (n − 1) + (n − 1)∆ + − m∆

= + (n − m − 1)∆.

If n > m, then ≥ .

If n ≤ m, then ≥ − (m + 1 − n)∆. We need to find

the upper bound for∆. For each processorPi with i < n, ≤ and

≥ + ∆. Therefore,∆ ≤ . We have

≥ − (m + 1 − n) . ∆ → 0 and m∆ →

0, whenm → ∞.

Examples can be constructed to show that both bounds are tight. ■

3.4. Rate-Monotonic-Best-Fit

When RM-FF schedules a task, it always assigns it to the lowest indexed processor

m 1+() 2
1 m 1+()⁄

1– 
 

ui k,k 1=
m∑

m 1+() 2
1 m 1+()⁄

1– 
 

m 2
1 m 1+()⁄

1– 
 

2
1 m 1+()⁄

1–

un k,k 1=
m∑ m 2

1 m 1+()⁄
1– 

 

m 2
1 m 1+()⁄

1– 
 

Uii 1=
n∑ m 2

1 m 1+()⁄
1– 

 
m 2

1 m 1+()⁄
1– 

 

m 2
1 m 1+()⁄

1– 
 

nm 2
1 m 1+()⁄

1– 
 

nm 2
1 m 1+()⁄

1– 
 

ui k,k 1=
m∑ m 2

1 m 1+()⁄
1– 

 

m 1+() 2
1 m 1+()⁄

1– 
 

ui k,k 1=
m∑

m 1+() 2
1 m 1+()⁄

1– 
 

m 2
1 m 1+()⁄

1– 
 

2
1 m 1+()⁄

1–

un k,k 1=
m∑ m 2

1 m 1+()⁄
1– 

 

m 2
1 m 1+()⁄

1– 
 

Uii 1=
n∑ m 2

1 m 1+()⁄
1– 

 
m 2

1 m 1+()⁄
1– 

 

nm 2
1 m 1+()⁄

1– 
 

Uii 1=
n∑ nm 2

1 m 1+()⁄
1– 

 

Uii 1=
n∑ nm 2

1 m 1+()⁄
1– 

 

ui k,k 1=
m∑ m 2

1 m⁄
1– 

 

ui k,k 1=
m∑ m 2

1 m 1+()⁄
1– 

 
m 2

1 m⁄
2

1 m 1+()⁄
– 

 

Uii 1=
n∑ nm 2

1 m 1+()⁄
1– 

 
m 2

1 m⁄
2

1 m 1+()⁄
– 

 

www.manaraa.com

64

on which the task can be scheduled. This strategy may not be optimal in some cases. For

example, the lowest indexed processor on which a task is scheduled may be the one with

the largest available utilization among all those busy (non-idle) processors. This processor

could have been used to execute a future task with large enough utilization so that it could

not be scheduled on any busy processors, had it not been assigned a task with a small utili-

zation earlier on. In order to overcome these likely disadvantages, a new algorithm is

designed as follows, which is based on the Best-Fit bin-packing algorithm.

It is a well-known fact that the Best-Fit heuristic has the same worst case perfor-

mance bound as the First-Fit in bin-packing [15]. Yet we cannot automatically conclude

from the bin-packing results that RM-FF and RM-BF will have the same worst case perfor-

mance bound, since the RMMS problem differs from the bin-packing problem (i.e., the

classical one-dimensional bin-packing). The major difference is that the size of each bin in

bin-packing is unitary and the utilization of a processor can assume a value ranging from

ln2 to 1 as given by the schedulability condition.

In bin-packing, when an item is allocated by the Best-Fit, the lowest indexed bin in

which the item can be fit and whose content is the largest among all the non-empty bins in

which the item can be fit, is chosen to contain the item. Since the “sizes” of the bins are

unitary, finding the fitting bin whose content is the largest among all the non-empty fitting

bins is equivalent to finding the fitting bin whose available space is the smallest among all

the non-empty fitting bins. This “equivalence” property of Best-Fit does not hold when

Best-Fit is used to schedule tasks on processors. The “unfilled” utilization of a processor is

not only determined by the total utilization of the tasks assigned to it, but also by the num-

ber of tasks. Therefore, it is possible that theavailableutilization of a processor with a cur-

rently large utilization is larger than that of a processor with a currently small utilization.

For example, processorP1 is currently assigned two tasks, each with a utilization ofu =

() ≈ 0.259. Then the total utilization of processorP1 is U1 = 2() < 0.52.

The available (or unfilled) utilization ofP1 is given by − 1 = (). For

2
1 3⁄

1– 2
1 3⁄

1–

3 1 u+() 2⁄ 2
1 3⁄

1–

www.manaraa.com

65

another processorP2 to which one task with a utilization ofU2 = 0.52 is assigned, its avail-

able utilization is given by (1− 0.52)/(1 + 0.52) > 0.31. Therefore, theavailable utilization

of processorP2 is larger than that of processorP1 even thoughU1 < U2. The schedulability

condition used in both the calculations is the UO condition.

In other words, there are at least two notably different ways in which the Best-Fit

heuristic can be applied to allocating tasks to processors: one is to find the “fitting” proces-

sor with the largest utilization, and the other is to find the “fitting” processor with the small-

est available utilization. Presumably these two variations might have different worst case

performance bounds. In the following, we only investigate one variation of the Best-Fit

strategy, where the “best fit” is the “fitting” processor with the smallest available utilization.

Algorithm RM-BF: Let the processors be indexed asP1, P2, …, with each initially

in the idle state, i.e., with zero utilization. The tasks will be scheduled in that

order. To schedule , find the leastj such that task together with all the tasks that have

been assigned to processor Pj, can be feasibly scheduled according to the condition

2 − 1 for a single processor, and 2 − 1 be as small as possi-

ble, and assign task to Pj, where and are the number of tasks already assigned to

processorPj and the total utilization of the tasks, respectively.

With its “minimal unfilled utilization” strategy in assigning tasks to processors, the

RM-BF algorithmdoes not outperformRM-FF in the worst-case, as shown by Theorem

3.9. Before we prove the bounds for RM-BF, we need to establish a few lemmas.

Definition 3.1: For all the processors required to schedule a given set of tasks by

RM-BF, they are divided into two types of processors:

Type (I): For all the tasks with utilizations that were

assigned to a processorPx in the completed RM-BF schedule, there exists at least one task

 with i ≥ 2 that was assigned toPx, not because it could not be assigned on any processor

Py with lower index, i.e.,y < x, but because 2 − 1 <

2 − 1, where is the number of tasks assigned to processorPy.

τ1 τ2 … τm, , ,

τi τi

1 Uj kj⁄+()
kj–

1 Uj kj⁄+()
kj–

τi kj Uj

kj

τ1 τ2 … τm, , , u1 u2 … um, , ,

τi

1 ull 1=
i 1–∑ 

  i 1–()⁄+ 
  i 1–()–

1 ull 1=

ny∑ 
  ny⁄+ 

  ny–
ny

www.manaraa.com

66

ProcessorPx is called a Type (I) processor. Such a task is, for convenience, referred to

as a task with Type (I) property.

Type (II): They consist of all the processors that do not belong to Type (I).

Lemma 3.6: If m tasks cannot be feasibly scheduled on m− 1 processors accord-

ing to RM-BF, then the total utilization of the tasks is greater than .

The proof of this lemma is the same as the proof to Lemma 3.1.

Lemma 3.7: In the completedRM-BF schedule, if the mth task on any of the Type

(I) processors has Type (I) property, where m≥ 2, then the total utilization of the first (m−

1) tasks on that processor is greater than (m− 1) .

Proof: Let be the tasks that were assigned a processorPk of

Type (I), andPy, with y < k, is one of the processors on which could have been sched-

uled, but 2 − 1 < 2 − 1,

where is the number of tasks assigned to processorPy, and where is the utilization

of task on processorPx.

Since > 2 − 1 (note that this is true even though

is assigned to processorPk before some of tasks among the tasks are assigned to proces-

sorPy), for 1 ≤ i ≤ m − 1, we have

 > 2 − 1 > 2 − 1.

Summing up these(m − 1) inequalities yields

 > 2(m − 1) − (m − 1).

Solving the above equation yields

 > (m − 1) . ■

The following lemma is key to the proof of Theorem 3.9.

Lemma 3.8: In the completedRM-BF schedule, among the processors of Type (I)

on which the second task has Type (I) property, there are at most three of them, each of

which has a total utilization less than2 .

τi

m 2
1 2⁄

1– 
 

2
1 m⁄

1– 
 

τk 1, τk 2, … τk m, 1–, , ,

τm

1 uk l,l 1=
m 1–∑ 

  m 1–()⁄+ 
  m 1–()–

1 uy l,l 1=

ny∑ 
  ny⁄+ 

  ny–

ny ux l,

τx l,

uk i, 1 uy l,l 1=

ny∑ 
  ny⁄+ 

  ny–
τk i,

ny

uk i, 1 uy l,l 1=

ny∑ 
  ny⁄+ 

  ny–
1 uk l,l 1=

m 1–∑ 
  m 1–()⁄+ 

  m 1–()–

uk j,j 1=
m 1–∑ 1 uk l,l 1=

m 1–∑ 
  m 1–()⁄+ 

  m 1–()–

uk j,j 1=
m 1–∑ 2

1 m⁄
1– 

 

2
1 3⁄

1– 
 

www.manaraa.com

67

Proof: This lemma is proven by contradiction. LetPi, Pj, Pk, andPl be the four pro-

cessors, each of which has a total utilization less than 2 withi < j < k < l , i.e.,

 < 2

 < 2

 < 2

 < 2

whereni ≥ 2,nj ≥ 2,nk ≥ 2, andnl ≥ 2 are the number of tasks assigned to processorsPi, Pj,

Pk, andPl, respectively.

Let’s define and to be the utilizations of the first task and second task

 assigned to processorPi, and to be the utilizations of the first task and

second task assigned to processorPj. and , and are similarly defined.

We further assume that is the number of tasks which have been assigned to processorPi,

when the second task on processorPj is assigned. Note thati < j and 1 ≤ ≤ nj.

There are three cases to consider.

Case 1: Tasks and are assigned to processorPj after task is assigned

to processorPi. Since task is a Type (I) task, the following inequality must hold

2 − 1 < 2 − 1

Note that ≥ 2, i.e., other tasks may have been assigned to processorPi after task

 but before is assigned to processorPj.

Since 2 − 1 ≤ 2 − 1 <

2 − 1, we have

2 − 1 < 2 − 1, i.e., 1 + > .

Case 2: Tasks and are assigned to processorPj after task is assigned

to processorPi but before task is assigned to processorPi.

This case is impossible with RM-BF scheduling. Since < 2()

and > () according to Lemma 3.7, < 2()− () ≈ 0.1056.

2
1 3⁄

1– 
 

ui x,x 1=

ni∑ 2
1 3⁄

1– 
 

uj x,x 1=

nj∑ 2
1 3⁄

1– 
 

uk x,x 1=

nk∑ 2
1 3⁄

1– 
 

ul x,x 1=

nl∑ 2
1 3⁄

1– 
 

ui 1, ui 2, τi 1,

τi 2, uj 1, uj 2, τj 1,

τj 2, uk 1, uk 2, ul 1, ul 2,

ny

ny

τj 1, τj 2, τi 2,

τj 2,

1 uj 1,+() 1–
1 ui x,x 1=

ny∑ 
  ny⁄+ 

  ny–

ny

τi 2, τj 1,

1 ui x,x 1=

ny∑ 
  ny⁄+ 

  ny–
1 ui 1, ui 2,+() 2⁄+() 2–

1 ui 1, 2⁄+() 2–

1 uj 1,+() 1–
1 ui 1, 2⁄+() 2–

uj 1, 1 ui 1, 2⁄+() 2

τj 1, τj 2, τi 1,

τi 2,

ui x,x 1=

ni∑ 2
1 3⁄

1–

ui 1, 2
1 2⁄

1– ui 2, 2
1 3⁄

1– 2
1 2⁄

1–

www.manaraa.com

68

Since task is assigned to processorPj before task is assigned to processorPi, and

task is a Type (I) task, 2 − 1 > 2(− 1, i.e.,

 < . (Eq.3.14)

Since task is also a Type (I) task, it must be true according to the definition that

2 − 1 < 2 − 1,

where is the number of tasks that have been assigned to processorPj after task , but

before task is assigned to processorPi. Note that it is conceivable that other tasks may

have been assigned to processorPj after task but before task is assigned to proces-

sorPi.

Since 2 − 1 < 2 − 1 < 2 − 1,

we have > . This is a contradiction to inequality (3.14).

Case 3: Task is assigned to processorPj after task is assigned to processor

Pi, and task is assigned to processorPj after task is assigned to processorPi. Since

task is a Type (I) task, the following inequality must hold

2 − 1 < 2 − 1

Note that ≥ 2, i.e., other tasks may have been assigned to processorPi after task

 but before is assigned to processorPj.

Since 2 − 1 ≤ 2 − 1 <

2 − 1, we have

2 − 1 < 2 − 1, i.e., 1 + > (1 + / 2)2.

Therefore for processorsPi andPj, we have

1 + > (1 + / 2)2. (Eq.3.15)

For the tasks assigned on processorsPj andPk, andPk andPl, it can be similarly

proven that

1 + > (1 + / 2)2 (Eq.3.16)

1 + > (1 + / 2)2 (Eq.3.17)

τj 2, τi 2,

τj 2, 1 ui 1,+() 1–
1 uj 1,+() 1–

ui 1, uj 1,

τi 2,

1 ui 1,+() 1–
1 uj x,x 1=

nz∑ 
  nz⁄+ 

  nz–

nz τj 2,

τi 2,

τj 2, τi 2,

1 ui 1,+() 1–
1 uj x,x 1=

nz∑ 
  nz⁄+ 

  nz–
1 uj 1,+() 1–

ui 1, uj 1,

τj 1, τi 1,

τj 2, τi 2,

τj 2,

1 uj 1,+() 1–
1 ui x,x 1=

ny∑ 
  ny⁄+ 

  ny–

ny

τi 2, τj 2,

1 ui x,x 1=

ny∑ 
  ny⁄+ 

  ny–
1 ui 1, ui 2,+() 2⁄+() 2–

1 ui 1, 2⁄+() 2–

1 uj 1,+() 1–
1 ui 1, 2⁄+() 2–

uj 1, ui 1,

uj 1, ui 1,

uk 1, uj 1,

ul 1, uk 1,

www.manaraa.com

69

Summing up inequalities (3.15), (3.16), and (3.17) yields > (+ +)

/ 4 + . Since > (), > (), and > () according to

Lemma 3.7, > 3()2 / 4 + () = 0.5429 > 2(). This results in a

contradiction to the assumption that < 2(). ■

Theorem 3.9: Let N and be the number of processors required by RM-BF and

the minimum number of processors required to feasibly schedule a given set of tasks,

respectively. Then 2.2833≤ ≤ 2.33.

Proof: Similar to what we have done in Section 3.3 for the RM-FF algorithm, we

use the same weighting function to map the utilization of a task into the real interval [0,1].

Note that all the relevant lemmas in Section 3.3 hold for those processors of Type (II) in the

RM-BF schedule.

Let Σ = { } be a set ofm tasks, with their utilizations

respectively, andϖ = . By Lemma 3.3,ϖ ≤ N0 / a, wherea = .

Suppose that among theN number of processors required by RM-BF to schedule a

given setΣ of tasks,M of them are processors of Type (I). Since all processors of Type (I)

must be assigned at least two tasks, there exists for each processor a numberm≥ 2 such that

themth task is a Type (I) task. For all the processors of Type (I) on each of which themth

task is a Type (I) task withm≥ 3, we have > 1 since > 2() accord-

ing to Lemma 3.7.

Whenm= 2, there are at most three of the processors, each of which has a total uti-

lization less than 2(). Therefore, for all the processors of Type (I), there are at most

three processors whose is less than 1 in the RM-BF schedule.

Now let L = n1 + n2 be defined similarly as in Section 3.3, except that they are for

processors of Type (II). All the results derived in Section 3.3 are applicable to the set of

Type (II) processors in the RM-BF schedule.

The upper bound of RM-BF can now be determined.

ϖ = ≥ (N − L − M) + n1 () / a

ul 1, ui 1,
2

uj 1,
2

uk 1,
2

ui 1, ui 1, 2
1 2⁄

1– uj 1, 2
1 2⁄

1– uk 1, 2
1 2⁄

1–

ul 1, 2
1 2⁄

1– 2
1 2⁄

1– 2
1 3⁄

1–

ul x,x 1=

nl∑ 2
1 3⁄

1–

N0

ℜRM BF–
∞

τ1 τ2 … τm, , , u1 u2 … um, , ,

W ui()
i 1=
m∑ 2 2

1 3⁄
1– 

 

W uj()
j∑ ujj∑ 2

1 3⁄
1–

2
1 3⁄

1–

W uj()
j∑

W ui()
i 1=
m∑ 2

1 2⁄
1–

www.manaraa.com

70

= N − n1 − n2 + n1()/ a − 3

≥ N − 2N0[1 − () / a] − n2 − 3

Sinceϖ ≤ N0 / a andn2 ≤ 1, we have

N ≤ N0 [2a + 1 − 2()] / a + 4. Hence,

≤ [2a + 1 − 2()] / a ≈ 2.33, wherea = .

The lower bound is proven by repeating the same argument as in Theorem 3.7 for

RM-BF. Therefore, 2.2833≤ . ■

Note that even though RM-BF has the same worst case performance bound as RM-

FF, special cases exist where RM-BF performs better than RM-FF, and vice versa. For

example, for a set of four tasks with their utilizations given as follows, two processors are

needed by RM-BF while three processors are required by RM-FF to schedule it.

u1 = 2/5,u2 = 3/7 +ε, u3 = (4 − 7ε) / (10 + 7ε), andu4 = 3/7 for arbitrarily smallε > 0.

We can also derive similar bounds for RM-BF with respect to the maximum allow-

able utilization of a task.

Theorem 3.10: Let N and N0 be the number of processors required by RM-BF and

the minimum number of processors required to feasibly schedule a given set of tasks,

respectively. Ifα = andα ≤ − 1, then

≤ 1 / [(c + 1)(− 1)], for c = 0, 1, 2,…

When c→ ∞, [(c + 1)(− 1)] → ln2. Then ≤ 1/ln2. The upper

bounds of RM-BF with regard toα are given in Table 3.1 for a few values ofα.

3.5. The Refinements of RM-FF and RM-BF

It is clear that ifα is small, RM-FF performs well. However, its performance

degrades rapidly whenα > 0.4142. If we can find a better way to schedule the tasks with

large utilization, and use the RM-FF to schedule the tasks with small utilization, then the

overall performance of the combined algorithm will be improved. We are thus motivated

to develop a new allocation algorithm that is based on the well-known divide-and-conquer

2
1 2⁄

1–

2
1 2⁄

1–

2
1 2⁄

1–

ℜRM BF–
∞

2
1 2⁄

1– 2 2
1 3⁄

1– 
 

ℜRM BF–
∞

max1 i n≤ ≤ ui{ } 2
1 1 c+()⁄

ℜRM BF–
∞ α() 2

1 2 c+()⁄

2
1 2 c+()⁄ ℜRM BF–

∞ α()

www.manaraa.com

71

strategy. It is called the Refined-Rate-Monotonic-First-Fit (RRM-FF).

RRM-FF divides the processors into two groups such that within each group there

is an infinite number of processors. It also divides the task set into two groups according to

their utilizations such that tasks within a group are assigned to the same group of proces-

sors. Let the processors in the first group (or theP group) be indexed asP1, P2, …, and pro-

cessors in the second group (or theQ group) be indexed asQ1, Q2, …, with each one

initially in the idle state. A task belongs to the first group if its utilization is no greater

than , i.e., ui ≤ , otherwise it belongs to the second group. The tasks

 will be scheduled in that order. To schedule , RRM-FF first identifies the

task group it belongs to and then finds the leastj such that task , together with all the tasks

that have been assigned to processor Pj (or Qj), can be feasibly scheduled, and assign task

 to Pj. The First-Fit heuristic is used to assign tasks in both groups.

RRM-FF can be described in a more algorithmic format in Figure 3.5. Note that the

grouping of tasks is “imaginary” and the algorithm is clearly on-line. The schedulability

condition used for scheduling tasks in the first group is the IFF condition. Since the algo-

rithm assumes that at most two tasks can be assigned to any processor in the second pro-

cessor group Q, the IFF schedulability test is reduced to just two comparison operations.

Therefore, the overall time complexity of the RRM-FF algorithm is still . The

worst case performance bound for RRM-FF is given in Theorem 3.11. Theorem 3.3 is key

to the proof of the upper bound.

Theorem 3.11: Let N and N0 be the number of processors required by RRM-FF

and the minimum number of processors required to feasibly schedule a given set of tasks,

respectively. Then ≤ 1.96. The upper bounds of RRM-FF with regard toα are

given in Table 3.2 for a few values ofα.

Table 3.2: Worst Case Performance Bounds of RRM-FF underα

α ≥ 0.4142 < 0.4142 < 0.2598 < 0.1892 < 0.1487 < 0.02

1.96 1.92 1.76 1.68 1.63 1.47

τi

2
1 3⁄

1– 2
1 3⁄

1–

τ1 τ2 … τm, , , τi

τi

τi

O n nlog()

ℜRRM FF–
∞

ℜRRM FF–
∞ α()

www.manaraa.com

72

Proof: Let Σ = { } be a set ofm tasks, with their utilizations being

. Then the total utilization of the task set is given by . Suppose that

N = NP + NQ processors are used by RRM-FF to schedule the task setΣ, whereNP andNQ

are the number of processors allocated in processor groupP and that in processor groupQ,

respectively. Among theNQ processors, letn1 be the number of processors assigned one

task andn2 be the number of processors assigned two tasks. ThenNQ = n1 + n2. For con-

venience, we leta = .

Among theNQ processors, for then1 processors to each of which one task is

assigned, we have by Theorem 3.3 that

Refined-Rate-Monotonic-First-Fit (RRM-FF) (Input: task setΣ; Output:m)

(1) Determine the group member of an incoming task as follows:

 = and =

(2) If the task belongs to the f irst group (P), then assign it to a
processor in the f irst processor group using the RM-FF algorithm.

(3) If the task belongs to the second group (Q), then assign it to a
processor in the second group as follows:
Use the First-Fit heuristic to f ind a processor that contains
exactly one task and assign task to processor if the two
tasks can be feasibly scheduled according to the following con-
dition:

min := i; max := j;

If (>) Then {min := j; max := i;};

If (+ ≤) Or (

 + ≤) Then feasible := True

Else feasible := False

Otherwise, assign a task to an empty processor.Terminate when all
tasks in the group have been assigned.

(4) The total number of processors required is the sum of the total
number of processors used in both processor groups.

τi

P τi ui 2
1 3⁄

1–≤{ } Q τi ui 2
1 3⁄

1–>{ }

Qi
τi Qi

Tj Ti

Tmax Tmin⁄ Cmin Cmax Tmax Tmin⁄ Tmin Tmax Tmin⁄

Cmin Cmax Tmax

Figure 3.5: Algorithm RRM-FF

τ1 τ2 … τm, , ,

u1 u2 … um, , , uii 1=
m∑

2
1 3⁄

1– 
 

www.manaraa.com

73

 > > n1 / 2 − ln2 / 4. (Eq.3.18)

For then2 processors to each of which two tasks are assigned, it is apparent that

 > (Eq.3.19)

sinceui, 1 > a andui, 2 > a.

Sinceui ≤ a, each of theNP processors must be assigned at least three tasks, possibly

except the last processor. According to Lemma 3.2, among all processors on each of which

at least three tasks are assigned, there are at most one processor whose utilization is no

greater than 3(). Then we have

≥ (Eq.3.20)

According to inequalities (3.18), (3.19), and (3.20), we have

 = + +

≥ n1 / 2 − ln2 / 4 + + .

SinceN0 ≥ andN = n1 + n2 + Np, it is immediate that

N0 ≥ 2aN − ln2 / 4− − (2a − 0.5)n1.

Since any two of the tasks that are assigned to then1 processors cannot be scheduled

on a single processor, we haveN0 ≥ n1.

ThenN0 ≥ 2aN − ln2 / 4− − (2a − 0.5)n1

≥ 2aN − ln2 / 4− − (2a − 0.5)N0

(Eq.3.21)

Hence, ≤ 1.96.

For α ≤ a, by arguments similar to the above one and the one in the proof of Theo-

rem 3.8, we obtain the rest of the results that are listed in Table 3.2. ■

At this point, it is interesting to note that although we choose () as value

used to divide a task set into two groups, it is in part for convenience of proof and presen-

uii 1=

n1∑ n1 1 2
1 n1⁄

+ 
 

⁄

ui 1, ui 2,+()
i 1=

n2∑ 2an2

2
1 4⁄

1–

uii 1=

NP∑ 3 2
1 4⁄

1– 
 

NP 1–()

uii 1=
m∑ uii 1=

n1∑ ui 1, ui 2,+()
i 1=

n2∑ Uii 1=

NP∑
2an2 3 2

1 4⁄
1– 

 
NP 1–()

uii 1=
m∑

3 2
1 4⁄

1– 
 

3 2
1 4⁄

1– 
 

3 2
1 4⁄

1– 
 

N
N0
------ 2a 0.5+

2a
-------------------- 2ln

4
-------- 3 2

1 4⁄
1– 

 
+ 

  1
2aN0
-------------–≤

ℜRRM FF–
∞

2
1 3⁄

1–

www.manaraa.com

74

tation. In fact, any value in the range of (,) can do. In other words, if we

divide a task set into groups by choosing any value between () and (), the

algorithm RRM-FF still has the same worst case upper bound of1.96. This claim can be

readily proven.

Let α be the maximum allowable utilization of a task, i.e.,α = . Then

we can prove, similar to what we have done in Section 3.3 that whenα is small, the worst

case performance of RM-BF can be significantly improved, as stated in Theorem 3.8.

Based on similar observation, we can modify RM-BF to develop a new algorithm called

Refined-Rate-Monotonic-Best-Fit (RRM-BF) to cope with situations whereα is large.

RRM-BF works as follows: It divides the processors into two groups such that

within each group there is an infinite number of processors. It also divides the task set into

two groups in just the same manner as RRM-FF does. Also, RRM-BF works the same way

as RRM-FF does, except that the Best-Fit heuristic is used to assign tasks in both groups

for RRM-BF. The following result can be proven similar to that of Theorem 3.11.

Theorem 3.12:Let N and N0 be the number of processors required by RRM-BF and

the minimum number of processors required to feasibly schedule a given set of tasks,

respectively. Then ≤ 1.96. The upper bounds of RRM-BF with regard toα are

given in Table 3.2 for a few values ofα.

3.6. Period-Oriented Heuristic Algorithms

As we have seen, the performance of a multiprocessor scheduling algorithm

depends not only upon the allocation scheme, but also upon the schedulability condition

used for each processor. The schedulability conditions that we have used in various sched-

uling algorithms so far are oriented towards utilization, i.e., the relative values of task uti-

lizations are taken into account. The performance of the algorithms is therefore limited

because they fail to consider the relative values of task periods.

Though task periods have been assumed to be arbitrary in those utilization-oriented

2
1 3⁄

1– 2
1 2⁄

1–

2
1 3⁄

1– 2
1 2⁄

1–

maxi Ci Ti⁄()

ℜRRM BF–
∞

www.manaraa.com

75

schedulability conditions, they are in fact derived under the condition that the ratio between

any two task periods is no more than 2. The task sets that are given in showing the lower

bounds for the algorithms might require few processors to execute them if their periods are

taken into consideration as well. One of the schedulability conditions that explicitly takes

into account the periods of tasks, besides the necessary and sufficient condition, is the PO

condition present in Section 2.3.

Next we will develop three scheduling algorithms that are based on the PO condi-

tion. The first two algorithms, RMST and RMGT, first order the tasks according to their

periods and then schedule them. Accordingly they are off-line algorithms. The third one,

RMGT-M, schedules tasks without assuming any knowledge about the incoming tasks, and

hence it is a on-line algorithm.

One of the salient features of these three algorithms is that their performance

increases asα, the maximum allowable utilization of a task, decreases. Though it may also

be true that the worst case performance of other algorithms increases asα decreases, the

increase in the performance of these three algorithms is very rapid.

It is apparent that in the PO condition, the utilization bound increases asβ

decreases.β is defined as the largest difference of the V values between any two tasks and

the V value of a task is defined as = − . In the PO condition, 1− βln2

→ 1 asβ → 0. This suggests that if we assign the tasks having almost the same V values

together on a processor, then the total utilization of a processor can be increased. Therefore,

a natural way to schedule a set of tasks is first to sort tasks according to the order of increas-

ing or decreasing V value and then schedule them in the new order.

The first algorithm is thus developed and it is called the Rate-Monotonic-Small-

Task (RMST) because it favors task sets that have smallα. RMST assigns tasks to proces-

sors in almost the same manner as the Next-Fit bin-packing heuristic. The algorithm is

described in Figure 3.6.

Note that denotes the total utilization of the tasks that have been assigned to

Vi T2 ilog T2 ilog

Um

www.manaraa.com

76

processor and denotes the utilization of task .

Theorem 3.13: Let N and N0 be the number of processors required by RMST and

the minimum number of processors required to feasibly schedule a given set of tasks,

respectively. Defineα = . If α ≥ 1/2, then

N ≤ 2N0 + 1 + ln2. (Eq.3.22)

If α < 1/2, then

. (Eq.3.23)

Proof: In the completed RMST schedule, let be the tasks that

are assigned to a processorPj and = forj = 1,…, N. Furthermore, let

be the V value of task and = − . Then . According to

RMST, we have

 + > ≥ (Eq.3.24)

for j = 1,…, N − 1.

Since ≥ , we have

≥ (Eq.3.25)

from (3.24), wherej = 1,…, N − 1.

Summing up theN − 1 inequalities in (3.25) yields

Rate-Monotonic-Small-Task (RMST)(Input: task setΣ; Output:m)

(1) Sort the task set such that 0 ≤ ≤ … ≤ < 1.
(2) i := 1; m := 1; := ;
(3) Assign task to processor if this task together with the

tasks that have already been assigned to can be feasibly
scheduled on according to the following condition:

 + ≤ , where β = - .
If not, assign task to and m := m + 1, := .

(4) If i < n, then i := i + 1 and go to (3) else stop.

V1 Vn
Sm Vi

τi Pm
Pm

Pm
Um ui max 2ln 1 β 2ln–,{ } Vi Sm

τi Pm 1+ Sm Vi

Figure 3.6: Algorithm RMST

Pm ui τi

max
i 1 … n, ,=

Ci Ti⁄()

N
N0
------ 1

1 α–
------------ 1 2ln

1 α–
------------+ 

  1
N0
------+<

τj 1, τj 2, … τj sj,, , , sj

Uj uj k,k 1=

sj∑ Vj i,

τj i, βj Vj 1+ 1, Vj 1, βjj 1=
N∑ 1≤

uj k,k 1=

sj∑ uj 1+ 1, max 2ln 1 βj 2ln–,{ } 1 βj 2ln–

Uj 1+ uj 1+ 1,

Uj Uj 1++ 1 βj 2ln–

www.manaraa.com

77

− U1 − UN ≥ (N − 1) − ln2 ≥ (N − 1) − ln2

since .

In other words,

 + U1 + UN − ln2 ≥ N − 1− ln2.

Since = , we haveN ≤ 2N0 + 1 + ln2.

If α = , thenα ≥ and

 > (Eq.3.26)

from (3.24), wherej = 1,…, N − 1.

Summing up theN − 1 inequalities in (3.26) yields

 + (N − 1)α > (N − 1) − ln2 > (N − 1) − ln2

since .

In other words,

− α > N(1 − α) − 1− ln2. (Eq.3.27)

(Eq.3.28)

Since and = , we have

. ■

Next we prove that the bounds given about are in fact tight.

Theorem 3.14: = 2. = for α = < 1/2.

Proof: SinceN ≤ 2N0 + 1 + ln2, it is immediate that ≤ 2.

Since for α = < 1/2, we have

≤ .

To prove that the above bounds are tight, we need only to construct task sets that

require the upper-bounded numbers of processors when they are scheduled by RMST.

Let n = 4k wherek is a positive integer andε be an arbitrarily small number such

that 0 <ε << 1/n. Furthermore, defineδ > 0 such that < 1 +ε.

2 Ujj 1=
N∑ βjj 1=

N 1–∑
βjj 1=

N 1–∑ βjj 1=
N∑ 1≤ ≤

2 Ujj 1=
N∑ N 1–()>

N0 Ujj 1=
N∑≥ ujj 1=

n∑
max
i 1 … n, ,=

Ci Ti⁄() uj 1+ 1,

Uj α+ 1 βj 2ln–

Ujj 1=
N∑ βjj 1=

N 1–∑
βjj 1=

N 1–∑ βjj 1=
N∑ 1≤ ≤

Ujj 1=
N∑

N
1

1 α–
------------ Ujj 1=

N∑ 1 2ln
1 α–
------------+ 

 +<

N0 ujj 1=
n∑≥ Ujj 1=

N∑ ujj 1=
n∑

N
N0
------ 1

1 α–
------------ 1 2ln

1 α–
------------+ 

  1
N0
------+<

ℜRMST
∞ ℜRMST

∞ α() 1
1 α–
------------ max

i 1 … n, ,=
Ci Ti⁄()

ℜRMST
∞

N
N0
------ 1

1 α–
------------ 1 2ln

1 α–
------------+ 

  1
N0
------+< max

i 1 … n, ,=
Ci Ti⁄()

ℜRMST
∞ α() 1

1 α–

2
nδ

www.manaraa.com

78

Then for the first bound, the set ofn tasksΣ = { } is constructed as fol-

lows:

 = = (1/2,) fori = 2j andj = 0, 1,…, 2k − 1;

 = = (ε,) for i = 2j + 1, j = 0, 1,…, 2k − 1.

Since − = δ, the tasks are in the order of increasing V value.

We first claim that 2k processors are required to schedule the task set by RMST.

According to the schedulability condition used by RMST,

 + + > + + > 1 > 1− 2δln2 = 1− βln2,

whereβ = 2δ andj = 0, 1,……, 2k − 1.

Hence, tasks and are assigned to a processor, for j = 0,1, …, 2k − 1, in

the completed RMST schedule. Then a total number of 2k processors is required by RMST.

We next claim thatk + 1 processors are needed to schedule the same task set in the

optimal schedule.

Since 1/2 + 1/2 = 1≤ for i = 2j andj = 0,1, …, 2k − 1, any two of these 2k tasks

can be scheduled on a processor. Yet any three of these tasks cannot be scheduled on a pro-

cessor since1/2 + 1/2 + 1/2 > 1 + 1/n > 1 + ε > . Therefore, exactlyk processors are

needed to schedule these 2k tasks. For the other 2k tasks with = = (ε,) for

i = 2j + 1, j = 0, 1,…, 2k − 1, andε > 0, one processor is needed to schedule them sincenε

<< 1 ≤ .

Let N andN0 be the number of processors required by RMST and the minimum

number of processors required to schedule this task set, respectively. ThenN = 2k andN0

= k + 1. Hence = 2.

For the second bound, task sets can be similarly constructed to prove that the upper-

bounded number of processors is required by RMST in each case. Hence we can conclude

that

= . ■

Next we present an improved version of RMST. Since RMST favors task sets with

τ1 τ2 … τn, , ,

τi Ci Ti,() 2
iδ

τi Ci Ti,() 2
iδ

Vi 1+ Vi

1 2⁄

2
2jδ---------- ε

2
2j 1+() δ--------------------- 1 2⁄

2
2j 2+() δ--------------------- 1 2⁄

2
nδ---------- ε

2
nδ------- 1 2⁄

2
nδ----------

τ2j 1+ τ2j

2
iδ

2
nδ

τi Ci Ti,() 2
iδ

2
iδ

ℜRMST
∞

ℜRMST
∞ α() 1

1 α–

www.manaraa.com

79

small task utilization, its performance degrades as the maximum allowable utilization of a

task increases. In order to obtain better performance, we modify RMST in such a way that

tasks with large utilizations are scheduled together. The new algorithm is called Rate-

Monotonic-General-Task (RMGT). It is given in Figure 3.7.

The reason that1/3 is chosen in dividing the task set will become clear after the

proof of the following theorem is presented.

Theorem 3.15: = 7/4.

Proof: Let Σ = { } be a set ofm tasks with their utilizations

. Then the total utilization of the task set is given by . LetN andN0

be the number of processors required by RMGT and the minimum number of processors

required to scheduleΣ, respectively. Suppose thatN = N1 + N2 processors are used by

RMGT to schedule the task setΣ, whereN1 andN2 are the numbers of processors allocated

Rate-Monotonic-General-Task (RMGT) (Input: task setΣ; Output:m)

(1) Partition the task set Σ into two groups:
 = and =

Processors are also partitioned into two groups such that tasks
in a group must be assigned to processors in a group.

(2) Assign tasks in the f irst group, , to processors using the RMST
algorithm.

(3) Assign tasks in the second group, , to processors as follows:
Use the First-Fit heuristic to f ind a processor that contains
exactly one task and assign task to processor if the two
tasks can be feasibly scheduled according to the following con-
dition:

min := i; max := j;

If (>) Then {min := j; max := i;};

If (+ ≤) Or (

 + ≤) Then feasible := True

Else feasible := False

Otherwise, assign a task to an empty processor.Terminate when all
tasks in the group have been assigned

ℜ1 τi ui 1 3⁄≤(){ } ℜ2 τi ui 1 3⁄>{ }

ℜ1

ℜ2
Pi

τi Pi

Tj Ti

Tmax Tmin⁄ Cmin Cmax Tmax Tmin⁄ Tmin Tmax Tmin⁄

Cmin Cmax Tmax

Figure 3.7: Algorithm RMGT

ℜRMGT
∞

τ1 τ2 … τm, , ,

u1 u2 … um, , , uii 1=
m∑

www.manaraa.com

80

in the first processor group and the second processor group, respectively. Among theN2

processors, letn1 be the number of processors assigned one task andn2 be the number of

processors assigned two tasks. ThenN2 = n1 + n2.

In the first processor group, the following holds from (3.28) in Theorem 3.14

(Eq.3.29)

where α = .

Sinceα = 1/3 in the first task group, it follows from (3.29) that

(Eq.3.30)

In the second processor group, for then1 processors to each of which one task is

assigned,

 > > n1 / 2 − ln2 / 4. (Eq.3.31)

For then2 processors to each of which two tasks are assigned, we have

 > (Eq.3.32)

sinceui, 1 > 1/3 andui, 2 > 1/3.

Since >n1 / 2− ln2 / 4, > , and ≥

, we have

 = + +

≥ n1 / 2 − ln2 / 4 + + .

SinceN0 ≥ andN = n1 + n2 + N1, it is immediate that

Since any two of the tasks that are assigned to then1 processors cannot be scheduled

on a single processor, we haveN0 ≥ n1.

Then ≥ .

N1
1

1 α–
------------ Ujj 1=

N1∑ 1 2ln
1 α–
------------+ 

 +≤

max
i 1 … n, ,=

Ci Ti⁄()

2
3
--- 2ln

2
3
---N

1
+ + Ujj 1=

N1∑<

uii 1=

n1∑ n1 1 2
1 n1⁄

+ 
 

⁄

ui 1, ui 2,+()
i 1=

n2∑ 2n2() 3⁄

uii 1=

n1∑ ui 1, ui 2,+()
i 1=

n2∑ 2n2() 3⁄ uii 1=

N1∑
2
3
--- 2ln

2
3
---N

1
+ +

uii 1=
m∑ uii 1=

n1∑ ui 1, ui 2,+()
i 1=

n2∑ Uii 1=

N1∑
2n2() 3⁄ 2

3
--- 2ln

2
3
---N1+ +

uii 1=
m∑

N0
2N
3

------- 2
3
--- 3ln2

4

n1

6
-----–+ +≥

N0
2N
3

------- 2
3
--- 3ln2

4

n1

6
-----–+ +≥ 2N

3
------- 2

3
--- 3ln2

4

N0

6
------–+ +

www.manaraa.com

81

(Eq.3.33)

Therefore, ≤ 7/4.

In order to show that the bound as given above is tight, we construct the following

task set such thatN / N0 = 7/4.

For any positive integerm, the task set consists of13m tasks. We select two suffi-

ciently small positive numberε and δ such thatδ << 1/(6m) and

(Eq.3.34)

We label the tasks as for i = 1, 2,…, m and j = 1, 2,…, 13. The order of the

tasks that are given is not important, since the tasks will be sorted according to their V val-

ues.

The tasks are given by

 = , =ϕ , ϕ > 0,

 = , and

 =

For RMGT to schedule the task set, it divides it into two task groups:

 =

 =

In the completed RMGT schedule, 4m processors are required to schedule the tasks

in the since no two tasks in the group can be scheduled on a processor. This can be ver-

ified by the necessary and sufficient condition.

For the task group, 3m processors are required to schedule by RMGT. The pro-

cessor assignment is given by

, , , for i = 1, 2,…, m.

N
N0
------ 7

4
--- 1 3 2ln

4
-----------+ 

  1
N0
------–≤

ℜRMGT
∞

1
2
---2

ε– 1
6

2
3
---2

2ε–
–+ δ 3

2
---ε 2ln≤ ≤

τi j,

Ci j, ui j, Ti j, Ti j, 2
Vi j,

Vi j,
12i j+() ε

12i 11+() ε
{

1 j 12≤ ≤
i 13=

ui j,

1 2⁄
1 3⁄
1 6⁄ δ–



 j 2 5 8 11, , ,=

j 1 6 10, ,=

j 3 4 7 9 12 13, , , , ,=

ℜ1 τi j, i 1 … m j, , , 1 3 4 6 7 9 10 12 13, , , , , , , ,= ={ }

ℜ2 τi j, i 1 … m j, , , 2 5 8 11, , ,= ={ }

ℜ2

ℜ1

τi 1, τi 3, τi 4,, ,{ } τi 6, τi 7, τi 9,, ,{ } τi 10, τi 13, τi 12,, ,{ }

www.manaraa.com

82

This can be verified by the schedulability condition given in the RMGT algorithm.

In the optimal schedule, a total of 4m processors is required. The processor assign-

ment is given by

, , ,

for i = 1, 2,…, m. This can be verified to be so by the necessary and sufficient condition.

This assignment is optimal since the total utilization (load) of the task set is given by

 > 4m − 1 sinceδ << 1/(6m).

Hence,N / N0 = 7/4.

Therefore, = 7/4. ■

It is clear that1/3 is chosen in dividing the task set becauseα = 1/3 satisfying the

relationship = 2α.

In the following, we present an on-line version of the RMST algorithm described

earlier. The idea is to divide the incoming tasks into classes such that the utilization of a

processor can be increased by lowering the value ofβ in the schedulability condition:

 + ≤ (Eq.3.35)

We refer the new algorithm as Rate-Monotonic-General-Task-M (RMGT-M). The

parameter in the algorithm,M, denotes the number of classes a task set is divided into. The

processors are also divided intoM classes such that tasks in thekth class are assigned to

processors in thekth class. The class membership of a task is determined by the following

expression:

m = .

Then for each processor the value ofβ as defined in (3.35) is bounded above by1/

M. For each class, the algorithm keeps one so-called current processor. If a new task from

classk is added to the task set, then the algorithm first attempts to assign the task to the cur-

rent processor in thekth class. If the task can be scheduled on the current processor accord-

ing to the above condition (3.35), then add the task to it. Otherwise, the task is assigned to

an empty processor, which in turn becomes the current processor. Note that an improve-

τi 1, τi 2, τi 3,, ,{ } τi 4, τi 5, τi 6,, ,{ } τi 7, τi 8, τi 9, τi 13,, , ,{ } τi 10, τi 11, τi 12,, ,{ }

4 6δ–() m

ℜRMGT
∞

1 α–

Um ui max 2ln 1 β 2ln–,{ }

M log2 T() log2 T()–() 1+

www.manaraa.com

83

ment can be made here: instead of choosing the newly used processor as the current pro-

cessor, we can choose the one with a smaller utilization (load) between the newly used one

and the “current” processor. Since this modification does not improve the worst case per-

formance (but improves average case performance), we will not consider it here. A com-

plete description of the algorithm is given in Figure 3.8.

If we defineα = , we have the following theorem.

Theorem 3.16: Let N and N0 be the number of processors required by RMGT-M

and the minimum number of processors required to feasibly schedule a given set of tasks,

respectively. Then

N < + M (Eq.3.36)

if α ≤ ;

N < + M (Eq.3.37)

if α > .

Proof: According to the schedulability condition used in RMGT-M, the total utili-

zation of any busy processor except the current processors exceeds . In

other words,

≥ (N − M) [].

SinceN0 ≥ , we haveN0 ≥ (N − M) [].

Rate-Monotonic-General-Task-M(RMGT-M) (Input: task setΣ; Output:m)

(1) m := .
(2) Assign task to the current processor in the mth class if

this task together with the tasks that have been assigned to
can be feasibly scheduled according to the condition:

 + ≤
If not, assign task to and let becomes the current

processor.

M log2 T() log2 T()–() 1+
τi Pm

Pm

Um ui 1 2ln() M⁄–
τi Pm 1+ Pm 1+

Figure 3.8: Algorithm RMGT-M

max
i 1 … n, ,=

Ci Ti⁄()

N0

1 2ln() M⁄– α–

1 2ln() M⁄–() 2⁄

2N0

1 2ln() M⁄–

1 2ln() M⁄–() 2⁄

1 2ln() M⁄– α–

uii 1=
n∑ 1 2ln() M⁄– α–

uii 1=
n∑ 1 2ln() M⁄– α–

www.manaraa.com

84

If α ≤ , we have (3.36). Ifα > , we have

(3.37). ■

Corollary 3.1: ≤ .

Proof: For RMGT-M to be used as an on-line algorithm, the utilization of a task can

assume an arbitrary value in the range of zero and one since the characteristics of the

incoming tasks are unknown. Therefore, in the worst case,

N < + M

When N0 becomes large, the term M disappears. Hence, ≤

. ■

From the derivation of the bounds we can see that the performance of RMGT-M is

sensitive to the choice ofM, the number of classes in a task set. In practice, it is sufficient

for M to assume a value in the range of [5, 100]. The worst case bounds improve for large

values ofM. However,M also determines the number of current processors, which may not

be fully utilized. Next we consider the problem of optimally selecting the value ofM such

that the worst case bounds are lowest.

Let us assume that the total load of the task set is known. To find the value ofM that

gives the lowest worst case bound for the number of processors in (3.37), we fix the value

of U = . Since we derive both (3.36) and (3.37) through replacing byN0,

the inequalities hold when we useU in the place ofN0. Since both of the right hand sides

of (3.36) and (3.37) are convex functions in terms ofM, we solve them for the minimum

and we obtain

(Eq.3.38)

for the right hand side of (3.37), and

(Eq.3.39)

for the right hand side of (3.36).

This suggests to us that if we choose , we obtain

1 2ln() M⁄–() 2⁄ 1 2ln() M⁄–() 2⁄

ℜRMGT-M
∞ 1

1 2ln() M⁄–

2N0

1 2ln() M⁄–

ℜRMGT-M
∞

1
1 2ln() M⁄–

uii 1=
n∑ uii 1=

n∑

M∗ 2U 2ln 2ln+=

M∗ U 2ln 2ln+
1 α–

--------------------------------=

M U∼

www.manaraa.com

85

(Eq.3.40)

and

(Eq.3.41)

when .

Therefore, the lowest worst case bounds we can get for RMGT-M is 2 forα > (1 −

α ln2 / M)/2 and 1 /(1 − α) for α ≤ (1 − αln2/M)/2.

Since and , M must also approach infinity. Therefore, these bounds

may only be of theoretical interest.

3.7. Rate-Monotonic-First-Fit-Decreasing-Utilization

The algorithm RM-FFDU is based on the bin-packing heuristic of First-Fit-

Decreasing (FFD). It has been known that if a list of items is sorted in the order of non-

increasing size, then the performance of such bin-packing heuristics as First-Fit and Best-

Fit can be improved significantly. Davari and Dhall’s FFDUF is an example of applying the

First-Fit heuristic to schedule a set of tasks sorted in the order of non-increasing utilization.

However, their FFDUF only has a worst case bound of 2, in part because of the WC sched-

ulability condition used. Next, we will describe a new algorithm which is also based on the

FFD heuristic, but uses the UO condition for schedulability test on each processor. The

algorithm is called RM-FFDU and has a worst case bound of 5/3, the best in the literature

to date. RM-FFDU is given in Figure 3.9.

When the algorithm returns,m is the number of processors required by RM-FFDU

to schedule the task setΣ. is the number of tasks assigned on processorPj. We state the

upper bound in the following theorem.

Theorem 3.17: .

To prove Theorem 3.17, we need to introduce some notations.

Let x be the first item assigned to the last processor in the completed RM-FFDU

N
U
---- 2M

M 2ln–
------------------- M

U
-----+ 2 O 1 U()⁄()+→≤

N
U
---- MU

1 α–() M 2ln–
--------------------------------------- M+ 1

1 α–
------------ O 1 U()⁄()+→≤

U ∞→

U ∞→ M U∼

kj

ℜRM FFDU–
∞ 5

3
---≤

www.manaraa.com

86

schedule. Ifx ≤ ln2 − 3/5, then every busy processor is allocated a utilization at a level that

is at leastln2 − x ≥ 3/5. Then . Ifx > 1/2, thenN = , where is the

minimum number of processors required to schedule the task setΣ andN is the number of

processors required by RM-FFDU to scheduleΣ.

Lemma 3.9: If < y ≤ for c ≥ 1 in the completed RM−

FFDU schedule, then among all processors on each of which at least c tasks are assigned,

there are at most one processor to which not all the first c tasks are assigned tasks each with

a utilization greater than .

Proof: This lemma is proven by contradiction.

Suppose that there are two such processorsPi andPj with i < j such that each of

them is assigned at leastc tasks. Furthermore, let and be the task assigned to pro-

cessorPi and its utilization, respectively. Then for processorPi, there exists at least one task

 with m ≤ c having a utilization ≤ .

For processorPi, since < y ≤ for c ≥ 1 (y = by defini-

tion), all the tasks yet to be assigned after task have utilizations no greater than .

Furthermore, at leastc tasks can be assigned on processorPi because ≤ .

Since < y ≤ for processorPj with i < j, with m≤ cmust

be assigned to processorPi after the task is assigned to processorPj. This could only

happen when the first task assigned to processorPj cannot be assigned to processorPi, since

 > ≥ .

RM-First-Fit-Decreasing-Utilization (RM-FFDU) (Input: task setΣ; Output:m)

(1) Sort the task set in the order of non-increasing utilization.
(2) i:= 1; m:= 1;
(3) j:= 1; While (>) Do {j := j + 1;} ;
(4) := + 1; := + ; /* Assign task τi to P j */
(5) If (j > m) Then { m := j ;}
(6) i := i + 1;
(7) If (i > n) Then { Exit ;} Else {Goto 3;}

ui 2 uj l, 1+()
l 1=

kj∏ 
 ⁄ 1–

kj kj Uj Uj ui

Figure 3.9: Algorithm RM-FFDU

ℜRM FFDU–
∞ 5

3
---≤ N0 N0

2
1 c 1+()⁄

1– 2
1 c⁄

1–

2
1 c 1+()⁄

1–

τi k, ui k,

τi m, ui m, 2
1 c 1+()⁄

1–

2
1 c 1+()⁄

1– 2
1 c⁄

1– ui 1,

τi 1, ui 1,

ui 1, 2
1 c⁄

1–

2
1 c 1+()⁄

1– 2
1 c⁄

1– τi m,

τj 1,

uj 1, 2
1 c 1+()⁄

1– ui m,

www.manaraa.com

87

SinceUi + ≥ c(), whereUi is the total utilization assigned to processor

Pi when processorPj was first assigned the task , processorPi must have been assigned

c or more tasks each with a utilization equal to or greater than > . This is

a contradiction to the assumption that there exists at least one task having a utilization

≤ with m ≤ c on processorPi.

Therefore, the lemma must be true. ■

Before we move on, let us obtain the upper bound (not tight) for some of the values

of x.

Lemma 3.10: For some values of x, is given as in Table 3.3.

Proof: Sincex is the utilization of the first task on the last processor, we can assume,

without loss of generality, that the first task on the last processor is the last task in the task

set after sorting. Note that the tasks following the first task on the last processor do not

affect the number of processors used by RM-FFDU if they are included in the task set.

Therefore, we can further assume that the utilization of any other task in the task set is equal

to or larger thanx.

For any value ofc such that () ≤ x ≤ (), supposen ≥ 1 tasks

are assigned to a processorPi with a total utilization ofUi, for c = 0, 1, 2,…

If n ≥ c, thenUi ≥ c().

If n < c, then c ≥ 2 andx > n() − Ui > c() − Ui. Ui > (c −

1)().

In summary, every processor has a utilization greater than (c − 1)() for c ≥

Table 3.3: Performance of RM−FFDU for some values of x

c x ≥ ≤ c x ≥ ≤

2 0.4142 2.4 5 0.1487 1.68

3 0.2599 1.92 6 0.1245 1.63

4 0.1892 1.76 �∞ → 0 1/ln2

uj 1, 2
1 c⁄

1–

τj 1,

uj 1, 2
1 c 1+()⁄

1–

τi m,

ui m, 2
1 c 1+()⁄

1–

ℜRM FFDU–
∞

ℜRM FFDU–
∞ ℜRM FFDU–

∞

2
1 c 1+()⁄

1– 2
1 c⁄

1–

2
1 c 1+()⁄

1–

2
1 n⁄

1– 2
1 c⁄

1–

2
1 c⁄

1–

2
1 c⁄

1–

www.manaraa.com

88

2. Since the utilization of a processor cannot exceed one in the optimal schedule.

≤ 1/ [(c − 1)∗(] for c > 1. A few values of are given in

Table 3.3 for some values ofc. ■

In the RM-FFDU schedule, let be the number of processors to each of whichi

tasks are assigned. ThenN = , whereκ is the maximum number of tasks assigned

to a processor. Then the total number of tasks in the task set is given byn = . In

the optimal schedule, let be the number of processors to each of whichi tasks are

assigned. The minimum number of processors required is = and n =

. We are trying to find the maximum of for any value ofx. Let us

define to be the utilization of the first task assigned to a processor. Then it is imme-

diate for RM-FFDU that ≥ if i < j. Where there is not confusion, we simply usey to

denote the utilization of the first task assigned to a processor.

For those processors to each of whichn tasks are assigned, their minimum total uti-

lization can be determined by the following method: Sincex > 2/ − 1, the

minimum ofU = is achieved atU = n{ } when = =

… = = .

In the subsequent lemmas, we will prove that ≤ 5/3 with regard tox.

We divide the range of valuesx can assume into several intervals and prove that

≤ 5/3 for each interval:

x ∈(1/3, 1/2], x ∈(1/4, 1/3], x ∈(1/5, 1/4], x∈(, 1/5], x∈(1/6,], x

∈(5() − 3/5, 1/6], and x ∈(6() − 3/5, 5() − 3/5].

The final proof of Theorem 3.17 appears after the lemmas.

Lemma 3.11: If x ∈(1/3, 1/2], then ≤ 3/2.

Proof: Sincex > 1/3, a processor cannot be assigned more than 2 tasks, i.e.,κ < 3.

Each processor is assigned one or two tasks in either the RM-FFDU schedule or the optimal

schedule.

Let n be the total number of tasks in a task set. The optimal number of processors

ℜRM FFDU–
∞

2
1 c⁄

1– ℜRM FFDU–
∞

Ni

Nii 1=
κ∑

iNii 1=
κ∑

Mi

N0 Mii 1=
κ∑

iMii 1=
κ∑ ℜRM FFDU–

∞

yi Pi

yi yj

1 ui+()
i 1=
n∏

uii 1=
n∑ 2 1 x+()⁄[] 1 n⁄

1– u1 u2

un 2 1 x+()⁄[] 1 n⁄
1–

ℜRM FFDU–
∞

ℜRM FFDU–
∞

2
1 4⁄

1– 2
1 4⁄

1–

2
1 5⁄

1– 2
1 6⁄

1– 2
1 5⁄

1–

ℜRM FFDU–
∞

www.manaraa.com

89

required is = . Furthermore,n = . In the RM-FFDU schedule,N =

andn = .

Then the ratio = is maximized when and = 0 and =n/

2. The maximum value is achieved at = 3/2. ■

Lemma 3.12: If x ∈(1/4, 1/3], then ≤ 3/2.

Proof: Sincex > 1/4, a processor can be assigned no more than 3 tasks, i.e.,κ = 3.

In the RM-FFDU schedule, let us consider all the processors to each of which one task is

assigned. Let u be the utilization of the only task assigned to a processor. Thenu > (1− 1/

3) / (1 + 1/3) = 1/2. In other words, among all the processors to each of which one task is

assigned, the utilization of the task is greater than1/2. Therefore, if there are such pro-

cessors in the RM-FFDU schedule, then at least processors are needed in the optimal

schedule.

For = N / , suppose = = 0, then = 1 since a

processor is assigned at most three tasks. If = = 0, then the maximum value

can achieve is 3/2 since at most three tasks can be assigned on one processor.

If = = 0, then = 1.

If = 0, then the maximum of is 3/2 since at most three tasks can be

assigned on one processor. If = 0, then for the processors in the optimal schedule,

each can only be assigned at most two tasks. Therefore the maximum of is

achieved when = 3 such that ≤ 4/3. If = 0, ≤ 3/2 for

similar reason.

If ≠ 0 in the RM-FFDU schedule, then ≤ 3/2. Suppose that in the

best case where each of the processors on each of which a task with a utilization greater

than 1/2 is assigned is assigned two tasks totally. Then the minimum number of processors

required (in the optimal schedule) is at least + (2 + 3 −)/3. Therefore

≤ (+ +) / (+ (2 + 3 −)/3) ≤ 3/2. ■

N0 Mii 1=
2∑ iMii 1=

2∑
Nii 1=

2∑ iNii 1=
2∑

ℜRM FFDU–
∞

N N0⁄ M1 M2

ℜRM FFDU–
∞

ℜRM FFDU–
∞

N1

N1

ℜRM FFDU–
∞

N0 N1 N2 ℜRM FFDU–
∞

N1 N3

ℜRM FFDU–
∞

N2 N3 ℜRM FFDU–
∞

N1 ℜRM FFDU–
∞

N2 N1

ℜRM FFDU–
∞

N1 N3 ℜRM FFDU–
∞

N3 ℜRM FFDU–
∞

Ni ℜRM FFDU–
∞

N1

N1 N2 N3 N1

ℜRM FFDU–
∞

N1 N2 N3 N1 N2 N3 N1

www.manaraa.com

90

Lemma 3.13: If x ∈(1/5, 1/4], then ≤ 3/2.

Proof: Sincex > 1/5, a processor is assigned at most four tasks, i.e.,κ = 4.

For those processors to each of which one task is assigned, the utilization of the task

is greater than (1− 1/4) / (1+ 1/4) = 3/5.

For those processors to each of which two tasks are assigned, the minimum of

+ is achieved at 2[] when = = . Then =

= = 0.2649, andU = 0.529 forx = 1/4. Note that forx > 1/4, U > 0.529. Two

more tasks can be assigned on these processors in the optimal schedule.

For those processors to each of which three or four tasks are assigned, their mini-

mum total utilization is determined atU ≥ 3x > 0.6, when = 1/5.

In the following, we define a function that maps the utilization of a task to a value

that is in the range of 0 and1, as given in Table 3.4. We call that value the weight of the

task, and the sum of the weights of the tasks assigned to a processor the weight of the pro-

cessor. The weighting function is designed in such a way that for every processor in the

RM-FFDU schedule, its weight is equal to or greater than1. At the meantime, the weight

of a processor in the optimal schedule is no greater than 5/3. We first claim that for any pro-

cessorP in the completed RM-FFDU schedule, the total weight of processorP is equal to

or greater than1, i.e.,W(P) = ≥ 1, wherek is the number of tasks assigned

to processorP.

In the completed RM-FFDU schedule, the utilization of the first task assigned on

Table 3.4: Weighting Function for x∈(1/5, 1/4]

W(u) = u∈

0 (0, 1/5]

1/3 (1/5,]

1/2 (,]

2/3 (, 3/5]

1 (3/5, 1]

ℜRM FFDU–
∞

u1

u2 2 1 x+()⁄ 1– u1 u2 2 1 x+()⁄ 1– u1 u2

8 5⁄ 1–

ui

W ui()
i 1=
k∑

8 5⁄ 1–

8 5⁄ 1– 2
1 2⁄

1–

2
1 2⁄

1–

www.manaraa.com

91

any processor must be equal to or greater thanx, i.e.,y ≥ x. Let us consider a processor to

which is first assigned a task with a utilization ofy.

Case 1: 1/5 <y ≤ . Then the processor must be assigned at least three tasks

each with a utilization greater than 1/5. Therefore,W(P)≥ 3•1/3 = 1.

Case 2: <y ≤ . Then the processor must be assigned at least two

tasks. Furthermore, except for possibly one processor by Lemma 3.9, each of the first two

tasks must have a utilization greater than . Therefore,W(P)≥ 1.

Case 3: <y ≤ 3/5. Then the processor must be assigned at least two tasks.

Since the second task must be a task with a utilization greater than1/5, we have W(P)≥ 1.

Case 4: 3/5 <y ≤ 1. Τhen W(P)≥ 1 by definition.

We then claim that for any processorP in the optimal schedule, W(P)≤ 3/2.

Let us assume that a processor in the optimal schedule is assignedm tasks with their

utilizations as .

Case I: < . Then at most four tasks each with a utilization greater than

1/5 can be assigned on it. Therefore, W(P)≤ 4/3.

Case II: < < and < . Then at most one more

task can be assigned to the processor. If < , then W(P) = 1/2 + 1/2 + 1/3 = 4/

3. If > , then W(P) =1/2 + 1/2 + 1/2 = 3/2. If < < and

 < , then at most two more tasks are assigned to the processor. Therefore, W(P)

= 1/2 + 1/3 + 1/3 + 1/3 = 3/2.

Case III: < < 3/5 and > . Then no more task with a utiliza-

tion greater than 1/5 can be assigned to the processor. Therefore, W(P) = 2/3 + 2/3 = 4/3.

Case IV: < < 3/5 and < < . Then no more task

with a utilization greater than1/5 can be assigned to the processor. Therefore, W(P) = 2/3

+ 1/2 = 7/6. If < < 3/5 and < , then at most one more task with a

utilization greater than 1/5 can be assigned to the processor. Therefore, W(P) = 2/3 +1/3 +

1/3 = 4/3.

8 5⁄ 1–

8 5⁄ 1– 2
1 2⁄

1–

8 5⁄ 1–

2
1 2⁄

1–

u1 u2 …… um≥ ≥ ≥

u1 8 5⁄ 1–

8 5⁄ 1– u1 2
1 2⁄

1– 8 5⁄ 1– u2

u3 8 5⁄ 1–

u3 8 5⁄ 1– 8 5⁄ 1– u1 2
1 2⁄

1–

u2 8 5⁄ 1–

2
1 2⁄

1– u1 u2 2
1 2⁄

1–

2
1 2⁄

1– u1 8 5⁄ 1– u2 2
1 2⁄

1–

2
1 2⁄

1– u1 u2 8 5⁄ 1–

www.manaraa.com

92

Case V: 3/5 < < 1. Then at most one more task with a utilization greater than1/

5 can be assigned to the same processor. Furthermore, < . Then W(P)≤ 1 + 1/

2 = 3/2.

Let N and be number of processors required by RM-FFDU and the minimum

number of processors required to schedule a given setΣ of n tasks, respectively. Then the

total weight of the task set is given by . Since, except for one processor, W(P)

≥ 1 for every processor in the RM-FFDU schedule, then ≥ N − 1. Since W(P)

≤ 3/2 for every processor in the optimal schedule, 3/2 ≥ . Therefore,

≤ 3/2. ■

Lemma 3.14: If x ∈(, 1/5], then ≤ 5/3.

Proof: Sincex > ≈ 0.1892, a processor is assigned at most five tasks, i.e.,

κ = 5.

For those processors to each of which one task is assigned, the utilization of each

task is greater than (1− 1/5) / (1+ 1/5) = 2/3.

For the processor to which two tasks are assigned, the minimum of + is

achieved atU = 2[] when = = . Then = =

≈ 0.29, andU = 2() ≈ 0.58 forx = 1/5. Note that forx < 1/5,U > 0.58.

For a processor to which three tasks are assigned, their minimum utilization is

achieved atU = 3{ } when = . We want to find

thex such that x≤ . Solving the inequalityx ≤

yieldsx ≤ . In other words, for every processor to which three tasks are assigned

in the completed RM−FFDU schedule, their total utilization is greater than 3() ≈

0.5676.

In the following, we define a function that maps the utilization of a task to a value

that is in the range of 0 and1, as given by Table 3.5. The weighting function is designed in

such a way that for every processor in the RM-FFDU schedule, its weight is equal to or

greater than1. At the meantime, the weight of a processor in the optimal schedule is no

u1

u2 2
1 2⁄

1–

N0

W ui()
i 1=
n∑

W ui()
i 1=
n∑

N0 W ui()
i 1=
n∑

ℜRM FFDU–
∞

2
1 4⁄

1– ℜRM FFDU–
∞

2
1 4⁄

1–

u1 u2

2 1 x+()⁄ 1– u1 u2 2 1 x+()⁄ 1– u1 u2

5 3⁄ 1– 5 3⁄ 1–

2 1 x+()⁄[] 1 3⁄
1– ui 2 1 x+()⁄[] 1 3⁄

1–

2 1 x+()⁄[] 1 3⁄
1– 2 1 x+()⁄[] 1 3⁄

1–

2
1 4⁄

1–

2
1 4⁄

1–

www.manaraa.com

93

greater than 5/3.

We first claim that for every processorP in the completed RM-FFDU schedule,

W(P) ≥ 1.

Sincex ∈(, 1/5], the utilization of the first task assigned on any processor

in the completed RM-FFDU schedule must be equal to or greater thanx, i.e.,y ≥ x. Let us

consider a processor to which is first assigned a task with a utilization ofy.

Case 1: < y ≤ . Then the processor must be assigned at least

three tasks. Therefore, W(P)≥ 1/3 + 1/3 + 1/3 = 1.

Case 2: < y≤ . Then the processor must be assigned at least two

tasks. Furthermore, except for one processor by Lemma 3.9, each of the first two tasks must

have a utilization greater than . Therefore, W(P)≥ 1/2 + 1/2 = 1.

Case 3: < y≤ 2/3. Then the processor must be assigned at least two tasks.

Since the second task must be a task with a utilization greater than , we have W(P)

≥ 2/3 + 1/3 = 1.

Case 4: 2/3 < y≤ 1, W(P) ≥ 1 by definition.

We then claim that for any processor in the optimal schedule,W(P)≤ 5/3.

Let us assume that a processor in the optimal schedule is assignedm tasks with their

utilizations as .

Case I: < . Then at most five tasks each with a utilization greater than

 can be assigned on a processor. Therefore, W(P)≤ 5/3.

Table 3.5: Weighting Function for x∈(, 1/5]

W(u) = u∈

0 (0,]

1/3 (,]

1/2 (,]

2/3 (, 2/3]

1 (2/3, 1]

2
1 4⁄

1–

2
1 4⁄

1–

2
1 4⁄

1– 5 3⁄ 1–

5 3⁄ 1– 2
1 2⁄

1–

2
1 2⁄

1–

2
1 4⁄

1–

2
1 4⁄

1– 5 3⁄ 1–

5 3⁄ 1– 2
1 2⁄

1–

5 3⁄ 1–

2
1 2⁄

1–

2
1 2⁄

1–

u1 u2 …… um≥ ≥ ≥

u1 5 3⁄ 1–

2
1 4⁄

1–

www.manaraa.com

94

Case II: < < and < . Then at most two more

tasks can be assigned to the processor. If < , then W(P)≤ 1/2 + 1/2 + 1/3 + 1/

3 = 5/3. If > , then W(P) =1/2 +1/2 +1/2 = 3/2. If < <

and < , then at most two more tasks each with a utilization less than

can be assigned to the processor. Therefore, W(P)≤ 1/2 + 1/3 + 1/3 + 1/3 = 3/2.

Case III: < < 2/3 and > . Then no more task with a utiliza-

tion greater than can be assigned to the processor. Therefore, W(P)≤ 2/3 + 2/3 =

4/3.

If < < 2/3 and < < , then at most one task with

a utilization greater than and less than can be assigned to the processor.

Therefore, W(P) = 2/3 + 1/2 + 1/2= 5/3.

If < < 2/3 and < , then at most two more task with a uti-

lization greater than can be assigned to the processor. Therefore, W(P)≤ 2/3 + 1/

3 + 1/3 + 1/3 = 5/3.

Case IV: 2/3 < < 1. Then at most one more task with a utilization greater than

and less than can be assigned to the same processor. Furthermore, <

. Then W(P)≤ 1 + 1/2 = 3/2.

Let N and be number of processors required by RM-FFDU and the minimum

number of processors required to schedule a given setΣ of n tasks, respectively. Then the

total weight of the task set is given by . Since W(P)≥ 1 for every processor

in the RM-FFDU schedule, then ≥ N − 1. Since W(P)≤ 5/3 for every pro-

cessor in the optimal schedule, 5 /3≥ . Therefore, ≤ 5/3. ■

Lemma 3.15: If x ∈(1/6,], then ≤ 5/3.

Proof: Sincex > 1/6, a processor is assigned at most five tasks, i.e.,κ = 5.

For those processors to each of which one task is assigned, the utilization of each

task is greater than [1− ()] / (1+) = ≈ 0.68.

For the processor to which two tasks are assigned, the minimum of + is

5 3⁄ 1– u1 2
1 2⁄

1– 5 3⁄ 1– u2

u3 5 3⁄ 1–

u3 5 3⁄ 1– 5 3⁄ 1– u1 2
1 2⁄

1–

u2 5 3⁄ 1– 5 3⁄ 1–

2
1 2⁄

1– u1 u2 2
1 2⁄

1–

2
1 4⁄

1–

2
1 2⁄

1– u1 5 3⁄ 1– u2 2
1 2⁄

1–

2
1 4⁄

1– 2
1 2⁄

1–

2
1 2⁄

1– u1 u2 5 3⁄ 1–

2
1 4⁄

1–

u1

2
1 4⁄

1– 2
1 4⁄

1– u2

2
1 2⁄

1–

N0

W ui()
i 1=
n∑

W ui()
i 1=
n∑

N0 W ui()
i 1=
n∑ ℜRM FFDU–

∞

2
1 4⁄

1– ℜRM FFDU–
∞

2
1 4⁄

1– 2
1 4⁄

1– 2
3 4⁄

1–

u1 u2

www.manaraa.com

95

achieved atU = 2[] when = = . Then = =

≈ 0.297, andU = 2() ≈ 0.594 forx = ≈ 0.1892. Note that forx

< , U > 0.594.

For a processor to which three tasks are assigned, their minimum utilization is

achieved atU = 3{ } when = . We want to find

thex such that x≤ . Solving the inequalityx ≤

yieldsx ≤ . In other words, for every processor to which three tasks are assigned

in the completed RM-FFDU schedule, their total utilization is greater than 3() ≈

0.5676.

For y < , each processor must be assigned at least four tasks each with a

utilization less than .

In the following, we define a function that maps the utilization of a task to a value

that is in the range of 0 and1, as given by Table 3.5. The weighting function is designed in

such a way that for every processor in the RM-FFDU schedule, its weight is equal to or

greater than1. At the meantime, the weight of a processor in the optimal schedule is no

greater than 5/3.

We first claim that for every processor P in the completed RM-FFDU schedule,

W(P) ≥ 1.

Sincex ∈(1/6,], the utilization of the first task assigned on any processor

in the completed RM-FFDU schedule must be equal to or greater thanx, i.e.,y ≥ x. Let us

Table 3.6: Weighting Function for x∈(1/6,]

W(u) = u ∈

0 (0,1/6]

1/3 (1/6,]

1/2 (,]

2/3 (,]

1 (, 1]

2 1 x+()⁄ 1– u1 u2 2 1 x+()⁄ 1– u1 u2

2
3 8⁄

1– 2
3 8⁄

1– 2
1 4⁄

1–

2
1 4⁄

1–

2 1 x+()⁄[] 1 3⁄
1– ui 2 1 x+()⁄[] 1 3⁄

1–

2 1 x+()⁄[] 1 3⁄
1– 2 1 x+()⁄[] 1 3⁄

1–

2
1 4⁄

1–

2
1 4⁄

1–

2
1 4⁄

1–

2
1 4⁄

1–

2
1 4⁄

1–

2
3 8⁄

1–

2
3 8⁄

1– 2
1 2⁄

1–

2
1 2⁄

1– 2
3 4⁄

1–

2
3 4⁄

1–

2
1 4⁄

1–

www.manaraa.com

96

consider a processor to which is first assigned a task with a utilization of y.

Case 1: 1/6 <y ≤ . Then the processor must be assigned at least four tasks.

Therefore, W(P)≥ 4 • 1/3 > 1.

Case 2: <y ≤ . Then the processor must be assigned at least three

tasks. Therefore, W(P)≥ 1/3 + 1/3 + 1/3 = 1.

Case 3: <y ≤ . Then the processor must be assigned at least two

tasks. Furthermore, except for one processor by Lemma 3.9, each of the first two tasks must

have a utilization greater than . Therefore, W(P)≥ 1/2 + 1/2 = 1.

Case 4: <y ≤ . Then the processor must be assigned at least two

tasks. Since the second task must be a task with a utilization greater than , we have

W(P) ≥ 2/3 + 1/3 = 1.

Case 5: < y≤ 1. Τhen W(P)≥ 1 by definition.

We then claim that for any processor in the optimal schedule, W(P)≤ 5/3.

Let us assume that a processor in the optimal schedule is assignedm tasks with their

utilizations as .

Case I: 1/6 < < . Then at most four tasks each with a utilization greater

than1/6 and less than can be assigned on a processor. Therefore, W(P)≤ 5 • 1/3

= 5/3.

Case II: < < and < . Then at most two more tasks

can be assigned to the processor. If < , then W(P)≤ 1/2 + 1/2 + 1/3 + 1/3 = 5/

3. If > , then no more task with a utilization greater than1/6 can be assigned to

the processor, and thus W(P)≤ 1/2 + 1/2 + 1/2 = 3/2.

Case III: < < and < . Then at most two more tasks

each with a utilization less than can be assigned to the processor. Therefore, W(P)

≤ 1/2 + 1/3 + 1/3 + 1/3 = 3/2.

Case IV: < < and > . Then at most one task with

a utilization greater than1/6 and less than can be assigned to the processor. There-

2
1 4⁄

1–

2
1 4⁄

1– 2
3 8⁄

1–

2
3 8⁄

1– 2
1 2⁄

1–

2
3 8⁄

1–

2
1 2⁄

1– 2
3 4⁄

1–

2
1 2⁄

1–

2
3 4⁄

1–

u1 u2 …… um≥ ≥ ≥

u1 2
3 8⁄

1–

2
3 8⁄

1–

2
3 8⁄

1– u1 2
1 2⁄

1– 2
3 8⁄

1– u2

u3 2
3 8⁄

1–

u3 2
3 8⁄

1–

2
3 8⁄

1– u1 2
1 2⁄

1– u2 2
3 8⁄

1–

2
3 8⁄

1–

2
1 2⁄

1– u1 2
3 4⁄

1– u2 2
1 2⁄

1–

2
1 4⁄

1–

www.manaraa.com

97

fore, W(P)≤ 2/3 + 2/3 + 1/4 < 5/3.

If < < and < < , then at most one task

with a utilization greater than1/6 and less than can be assigned to the processor.

Therefore, W(P)≤ 2/3 + 1/2 + 1/3= 3/2.

If < < and < , then at most two more task with a

utilization greater than can be assigned to the processor. Therefore, W(P)≤ 2/3 +

1/3 + 1/3 + 1/3 = 5/3.

Case V: < < 1. Then at most one more task with a utilization greater

than1/6 and less than can be assigned to the same processor. Then W(P)≤ 1 + 1/

3 = 4/3.

Let N and be number of processors required by RM-FFDU and the minimum

number of processors required to schedule a given setΣ of n tasks, respectively. Then the

total weight of the task set is given by . Since W(P)≥ 1 for every processor

in the RM-FFDU schedule, then ≥ N − 1. Since W(P)≤ 5/3 for every pro-

cessor in the optimal schedule, 5 /3≥ . Therefore, ≤ 5/3. ■

Lemma 3.16: If x ∈(5() − 3/5, 1/6], then ≤ 5/3.

Proof: Since 5() − 3/5≈ 0.14349 > 1/7, a processor is assigned at most six

tasks, i.e.,κ = 6. For convenience, let us denoteδ = 5() − 3/5.

For those processors to each of which one task is assigned, the utilization of each

task is greater than (1− 1/6) / (1+1/6) = 5/7≈ 0.71.

For the processor to which two tasks are assigned, the minimum of + is

achieved atU = 2[] when = = . Then = =

≈ 0.31, andU = 2() ≈ 0.62 forx = 1/6. Note that forx < 1/6, U >

0.62.

For a processor to which three tasks are assigned, their minimum utilization is

achieved atU = 3{ } when = . Then =

= = ≈ 0.197, andU = 3[] ≈ 0.59 forx = 1/6. Note that

2
1 2⁄

1– u1 2
3 4⁄

1– 2
3 8⁄

1– u2 2
1 2⁄

1–

2
3 4⁄

1–

2
1 2⁄

1– u1 2
3 4⁄

1– u2 2
3 8⁄

1–

2
1 4⁄

1–

2
3 4⁄

1– u1

2
3 8⁄

1–

N0

W ui()
i 1=
n∑

W ui()
i 1=
n∑

N0 W ui()
i 1=
n∑ ℜRM FFDU–

∞

2
1 5⁄

1– ℜRM FFDU–
∞

2
1 5⁄

1–

2
1 5⁄

1–

u1 u2

2 1 x+()⁄ 1– u1 u2 2 1 x+()⁄ 1– u1 u2

12 7⁄ 1– 12 7⁄ 1–

2 1 x+()⁄[] 1 3⁄
1– ui 2 1 x+()⁄[] 1 3⁄

1– u1 u2

u3 12 7⁄() 1 3⁄
1– 12 7⁄() 1 3⁄

1–

www.manaraa.com

98

for x < 1/6, U > 0.59.

For a processor to which four tasks are assigned, their minimum utilization is

achieved atU = 4{ } when = . We want to find

x such thatx ≤ . Solving the inequalityx ≤ yields

x ≤ ≈ 0.1487. In other words, for every processor to which four tasks are assigned

in the completed RM−FFDU schedule, their total utilization is greater than 4() ≈

0.595.

As having done so above, we define a function that maps the utilization of a task to

a value that is in the range of 0 and 1, as given by Table 3.5.

We first claim that for every processorP in the completed RM-FFDU schedule,

W(P) ≥ 1.

Sincex ∈(5() − 3/5, 1/6], the utilization of the first task assigned on any

processor in the completed RM-FFDU schedule must be equal to or greater thanx, i.e.,y ≥

x. Let us consider a processor to which is first assigned a task with a utilization of y.

Case 1: y < . Except for the last processor, the processor must be

assigned at least four tasks each with a utilization less than but greater than

δ. Therefore, W(P)≥ 4 • 1/4 = 1.

Table 3.7: Weighting Function for x∈(5() − 3/5, 1/6]

W(u) = u∈

0 (0,δ]

1/4 (δ,]

1/3 (,]

3/8 (,]

1/2 (,]

2/3 (,]

3/4 (, 5/7]

1 (5/7, 1]

2 1 x+()⁄[] 1 4⁄
1– ui 2 1 x+()⁄[] 1 4⁄

1–

2 1 x+()⁄[] 1 4⁄
1– 2 1 x+()⁄[] 1 4⁄

1–

2
1 5⁄

1–

2
1 5⁄

1–

2
1 5⁄

1–

2
1 5⁄

1–

12 7⁄() 1 3⁄
1–

12 7⁄() 1 3⁄
1– 2

1 3⁄
1–

2
1 3⁄

1– 12 7⁄ 1–

12 7⁄ 1– 2
1 2⁄

1–

2
1 2⁄

1– 12 7⁄() 2 3⁄
1–

12 7⁄() 2 3⁄
1–

12 7⁄() 1 3⁄
1–

12 7⁄() 1 3⁄
1–

www.manaraa.com

99

Case 2: < y ≤ . Except for one processor by Lemma 3.9,

the processor must be assigned at least three tasks each with a utilizationu such that

 < u ≤ . Therefore, W(P)≥ 3 • 1/3 = 1.

Case 3: < y ≤ . Except for one processor by Lemma 3.9, the

processor must be assigned at least three tasks. Furthermore, each of the first two tasks must

have a utilization greater than . Therefore, W(P)≥ 3/8 + 3/8 + 1/4 = 1.

Case 4: < y ≤ . Except for one processor by Lemma 3.9, the

processor must be assigned at least two tasks, each of which must have a utilization greater

than . Therefore we have W(P)≥ 1/2 + 1/2 = 1.

Case 5: < y ≤ ºº≈ 0.432. Since x∈(δ, 1/6], the processor

must be assigned at least two tasks each with a utilizationδ < u ≤ . If the

utilization of the second task is greater than , then W(P)≥ 2/3 + 1/3 = 1. If

the utilizationu2 of the second task is equal to or less than , then one more

task with a utilizationu3 ∈(δ, 1/6] must be assigned on the processor. This is because

− 1 = 7/6− 1 = 1/6≥ u3.

Then W(P)≥ 2/3 + 1/4 + 1/4 > 1.

Case 6: < y ≤ 5/7. Except for one processor by Lemma 3.9, the pro-

cessor must be assigned at least two tasks. The second task e must have a utilization greater

thanδ. Therefore we have W(P)≥ 3/4 + 1/4 = 1.

Case 7: 5/7 < y≤ 1. W(P)≥ 1 by definition.

We then claim that for any processor in the optimal schedule, W(P)≤ 5/3.

Let us assume that a processorP in the optimal schedule is assignedm tasks with

their utilizations as

Case I:δ < ≤ . Then at most six tasks each with a utilization

greater thanδ (and ≤) can be assigned on a processor. Therefore, W(P)≤ 6/4.

Case II: < ≤ . There are several sub-cases to consider.

If ≤ , then at most four more tasks each with a utilization greater thanδ

12 7⁄() 1 3⁄
1– 2

1 3⁄
1–

12 7⁄() 1 3⁄
1– 2

1 3⁄
1–

2
1 3⁄

1– 12 7⁄ 1–

2
1 3⁄

1–

12 7⁄ 1– 2
1 2⁄

1–

12 7⁄ 1–

2
1 2⁄

1– 12 7⁄() 2 3⁄
1–

12 7⁄() 2 3⁄
1–

12 7⁄() 1 3⁄
1–

12 7⁄() 1 3⁄
1–

2 1 12 7⁄() 1 3⁄
1–+{ } 1 12 7⁄() 2 3⁄

1–+{ } 
 

⁄

12 7⁄() 2 3⁄
1–

u1 u2 …… um x≥ ≥ ≥ ≥

u1 12 7⁄() 1 3⁄
1–

u1

12 7⁄() 1 3⁄
1– u1 2

1 3⁄
1–

u2 12 7⁄() 1 3⁄
1–

www.manaraa.com

100

can be assigned to the processor, i.e.,m ≤ 6. Then W(P)≤ 1/3 + 5 • 1/4 < 5/3.

If > and ≤ , then at most three more tasks

each with a utilization greater thanδ can be assigned to the processor, i.e.,m ≤ 6. Then

W(P) ≤ 1/3 + 1/3 + 4 • 1/4 = 5/3.

If > and ≤ , then at most one more task with

a utilization greater thanδ can be assigned to the processor, i.e.,m ≤ 5. This is because

3[] + 3δ > 1. Then W(P)≤ 3 • 1/3 + 2 • 1/4 < 5/3.

If > and ≤ , then no more task with a utiliza-

tion greater thanδ can be assigned to the processor, i.e.,m ≤ 5. Then W(P)≤ 4 • 1/3 + 1/4

< 5/3. If > , then W(P)≤ 5 • 1/3 = 5/3.

Case III: < ≤ . There are several sub-cases to consider. If

≤ , then at most four more tasks each with a utilization greater thanδ

(and less than can) be assigned to the processor, i.e.,m ≤ 6. Then W(P)≤

3/8 + 5 • 1/4 < 5/3.

If < ≤ and ≤ , then at most two

more tasks each with a utilization greater thanδ can be assigned to the processor, i.e.,m ≤

5. Then W(P)≤ 3/8 +1/3 + 3 •1/4 < 5/3. If ≤ , < ≤ ,

and ≤ , then at most one more task with a utilization greater thanδ can

be assigned to the processor, i.e.,m ≤ 5. Then W(P)≤ 3/8 + 2 • 1/3 + 2 • 1/4 < 5/3. If ≤

, < ≤ , and ≤ , then no more task

with a utilization greater thanδ can be assigned to the processor, i.e.,m ≤ 5. Then W(P)≤

3/8 + 3 • 1/3 + 1/4 < 5/3.

If < and < ≤ , then at most one more task

with a utilization greater thanδ can be assigned to the processor, i.e.,m≤ 4. Therefore W(P)

≤ 2• 3/8 +1/3 +1/4 < 5/3. If < , then at most more task with a utilization greater

thanδ and less than can be assigned to the processor, i.e.,m ≤ 4. Therefore W(P)

≤ 3 • 3/8 + 1/3 < 5/3.

u2 12 7⁄() 1 3⁄
1– u3 12 7⁄() 1 3⁄

1–

u3 12 7⁄() 1 3⁄
1– u4 12 7⁄() 1 3⁄

1–

12 7⁄() 1 3⁄
1–

u4 12 7⁄() 1 3⁄
1– u5 12 7⁄() 1 3⁄

1–

u5 12 7⁄() 1 3⁄
1–

2
1 3⁄

1– u1 12 7⁄ 1–

u2 12 7⁄() 1 3⁄
1–

12 7⁄() 1 3⁄
1–

12 7⁄() 1 3⁄
1– u2 2

1 3⁄
1– u3 12 7⁄() 1 3⁄

1–

u2 2
1 3⁄

1– 12 7⁄() 1 3⁄
1– u3 2

1 3⁄
1–

u4 12 7⁄() 1 3⁄
1–

u2

2
1 3⁄

1– 12 7⁄() 1 3⁄
1– u4 2

1 3⁄
1– u5 12 7⁄() 1 3⁄

1–

2
1 3⁄

1– u2 12 7⁄() 1 3⁄
1– u3 2

1 3⁄
1–

2
1 3⁄

1– u3

2
1 3⁄

1–

www.manaraa.com

101

Case IV: < ≤ There are several sub-cases to consider. If

≤ , then at most three more tasks each with a utilization greater thanδ (and

less than can) be assigned to the processor, i.e.,m≤ 5, since +

5δ > 1. Then W(P)≤ 1/2 + 4 • 1/4 < 5/3.

If < ≤ and ≤ , then at most two

more tasks each with a utilization greater thanδ can be assigned to the processor, i.e.,m ≤

5, since + + 4δ > 1. Then W(P)≤ 1/2 + 1/3 + 3 • 1/4 < 5/3. If

≤ and < ≤ , then at most two more tasks each with

a utilization greater thanδ and less than can be assigned to the processor,

i.e.,m≤ 5. Then W(P)≤ 1/2 + 2 •1/3 + 2 •1/4 = 5/3. If ≤ and

< ≤ , then no more task with a utilization greater thanδ can be assigned to the

processor, i.e.,m ≤ 4. Then W(P)≤ 1/2 + 3 • 1/3 < 5/3.

If < ≤ and ≤ , then at most two more

tasks each with a utilization greater thanδ can be assigned to the processor, i.e.,m ≤ 5.

Therefore W(P)≤ 1/2 + 3/8 + 3 •1/4 < 5/3. If < ≤ and

 < ≤ , then at most one more task with a utilization greater than

δ and less than can be assigned to the processor, i.e.,m≤ 4. Therefore W(P)

≤ 1/2 + 3/8 +1/3 + 1/4 < 5/3. If < ≤ and < ≤

 ≤ , then no more task with a utilization greater thanδ can be assigned to the

processor, i.e.,m≤ 4. Therefore W(P)≤ 1/2 + 3/8 +1/3 + 1/3 < 5/3. If ≤ and

 < ≤ , then at most one more task with a utilization greater thanδ

and less than can be assigned to the processor, i.e.,m≤ 4. Therefore W(P)

≤ 1/2 + 2 • 3/8 + 1/4 < 5/3.

If < ≤ and ≤ , then at most one more

task with a utilization greater thanδ can be assigned to the processor, i.e.,m≤ 4. Therefore

W(P) ≤ 2 • 1/2 + 2 • 1/4 < 5/3. If < ≤ and < ≤

, then at most one more task with a utilization greater thanδ and less than

12 7⁄ 1– u1 2
1 2⁄

1– u2

12 7⁄() 1 3⁄
1–

12 7⁄() 1 3⁄
1– 12 7⁄ 1–

12 7⁄() 1 3⁄
1– u2 2

1 3⁄
1– u3 12 7⁄() 1 3⁄

1–

12 7⁄ 1– 12 7⁄() 1 3⁄
1–

u2 2
1 3⁄

1– 12 7⁄() 1 3⁄
1– u3 2

1 3⁄
1–

12 7⁄() 1 3⁄
1–

u2 2
1 3⁄

1– 12 7⁄() 1 3⁄
1–

u4 2
1 3⁄

1–

2
1 3⁄

1– u2 12 7⁄ 1– u3 12 7⁄() 1 3⁄
1–

2
1 3⁄

1– u2 12 7⁄ 1–

12 7⁄() 1 3⁄
1– u3 2

1 3⁄
1–

12 7⁄() 1 3⁄
1–

2
1 3⁄

1– u2 12 7⁄ 1– 12 7⁄() 1 3⁄
1– u4

u3 2
1 3⁄

1–

u2 12 7⁄ 1–

2
1 3⁄

1– u3 12 7⁄ 1–

12 7⁄() 1 3⁄
1–

12 7⁄ 1– u2 2
1 2⁄

1– u3 12 7⁄() 1 3⁄
1–

12 7⁄ 1– u2 2
1 2⁄

1– 12 7⁄() 1 3⁄
1– u3

2
1 3⁄

1–

www.manaraa.com

102

 can be assigned to the processor, i.e., m ≤ 4, since 2() +

2[] > 1. Therefore W(P)≤ 2 • 1/2 + 1/3 + 1/4 < 5/3. If < ≤

 and < ≤ , then no more task with a utilization greater than

δ can be assigned to the processor, i.e.,m ≤ 3, since 2() + + δ > 1.

Therefore W(P)≤ 2 • 1/2 + 3/8 < 5/3. If < ≤ ≤ , then no more

task with a utilization greater thanδ can be assigned to the processor, i.e., m ≤ 3, since

3() + δ > 1. Therefore W(P)≤ 3 • 1/2 < 5/3.

Case V: < ≤ . There are several sub-cases to consider.

If ≤ , then at most three more tasks each with a utilization greater

thanδ can be assigned to the processor, i.e.,m ≤ 5. Therefore W(P)≤ 2/3 + 4 • 1/4 = 5/3.

If < ≤ and ≤ , then at most one

more task with a utilization greater thanδ can be assigned to the processor, i.e.,m≤ 4, since

 + + 3δ > 1. Then W(P)≤ 2/3 + 1/3 + 2 • 1/4 < 5/3. If ≤

and < ≤ , then at most one more task with a utilization

greater thanδ and less than can be assigned to the processor, i.e.,m ≤ 4,

since + 3[] > 1. Then W(P)≤ 2/3 + 2 • 1/3 + 1/4 < 5/3.

If < ≤ and ≤ , then at most one more

task with a utilization greater thanδ can be assigned to the processor, i.e.,m≤ 4. Therefore

W(P)≤ 2/3 + 3/8 + 2 •1/4 < 5/3. If < ≤ and <

≤ , then no more task with a utilization greater thanδ can be assigned to the pro-

cessor, i.e., m ≤ 3. Therefore W(P)≤ 2/3 + 3/8 +1/3 < 5/3. If < ≤

≤ , then no more task with a utilization greater thanδ and can be assigned to the

processor, i.e.,m ≤ 3. Therefore W(P)≤ 2/3 + 2 • 3/8 < 5/3.

If < ≤ and ≤ , then no more task with a utili-

zation greater thanδ can be assigned to the processor, i.e., m ≤ 3, since +

 + 2δ > 1. Therefore W(P)≤ 2/3 + 1/2 + 1/3 < 5/3. If < ≤

 and < ≤ , then no more task with a utilization greater than

12 7⁄() 1 3⁄
1– 12 7⁄ 1–

12 7⁄() 1 3⁄
1– 12 7⁄ 1– u2

2
1 2⁄

1– 2
1 3⁄

1– u3 12 7⁄ 1–

12 7⁄ 1– 2
1 3⁄

1–

12 7⁄ 1– u3 u2 2
1 2⁄

1–

12 7⁄ 1–

2
1 2⁄

1– u1 12 7⁄() 2 3⁄
1–

u2 12 7⁄() 1 3⁄
1–

12 7⁄() 1 3⁄
1– u2 2

1 3⁄
1– u3 12 7⁄() 1 3⁄

1–

2
1 2⁄

1– 12 7⁄() 1 3⁄
1– u2

2
1 3⁄

1– 12 7⁄() 1 3⁄
1– u3 2

1 3⁄
1–

12 7⁄() 1 3⁄
1–

2
1 2⁄

1– 12 7⁄() 1 3⁄
1–

2
1 3⁄

1– u2 12 7⁄ 1– u3 12 7⁄() 1 3⁄
1–

2
1 3⁄

1– u2 12 7⁄ 1– 12 7⁄() 1 3⁄
1– u3

2
1 3⁄

1–

2
1 3⁄

1– u3 u2

12 7⁄ 1–

12 7⁄ 1– u2 2
1 2⁄

1– u3 2
1 3⁄

1–

2
1 2⁄

1–

12 7⁄ 1– 12 7⁄ 1– u2

2
1 2⁄

1– 2
1 3⁄

1– u3 12 7⁄ 1–

www.manaraa.com

103

δ can be assigned to the processor, i.e.,m≤ 3, since + + +δ

> 1. Therefore W(P)≤ 2/3 + 1/2 + 3/8 < 5/3.

If < ≤ , then at most one more task with a utilization

greater thanδ and less than can be assigned to the processor, i.e.,m ≤ 3.

Therefore W(P)≤ 2/3 + 2/3 + 1/4 < 5/3.

Case VI: < ≤ 5/7. There are several sub-cases to consider.

If δ < ≤ , then at most two more tasks each with a utilization

greater thanδ can be assigned to the processor, i.e.,m ≤ 4, since + 4δ > 1.

Therefore W(P)≤ 3/4 + 3 • 1/4 < 5/3.

If < ≤ and ≤ , then at most one

more task with a utilization greater thanδ can be assigned to the processor, i.e.,m≤ 4, since

 + + 3δ > 1. Then W(P)≤ 3/4 + 1/3 + 2 •1/4 < 5/3. If

≤ and < ≤ , then at most one more task with a utili-

zation greater thanδ and less than can be assigned to the processor, i.e.,m

≤ 4, since + 3[] > 1. Then W(P)≤ 3/4 + 2• 1/3 + 1/4 = 5/3.

If < ≤ and ≤ , then at most one more

task with a utilization greater thanδ can be assigned to the processor, i.e.,m≤ 4. Therefore

W(P)≤ 3/4 + 3/8 + 2 •1/4 < 5/3. If < ≤ and <

≤ , then no more task with a utilization greater thanδ can be assigned to the pro-

cessor, i.e., m ≤ 3. Therefore W(P)≤ 3/4 + 3/8 +1/3 < 5/3. If < ≤

≤ , then no more task with a utilization greater thanδ and can be assigned to the

processor, i.e.,m ≤ 3. Therefore W(P)≤ 3/4 + 2 • 3/8 < 5/3.

If < ≤ and ≤ , then no more task with a utili-

zation greater thanδ can be assigned to the processor, i.e.,m ≤ 3, since +

 + 2δ > 1, and + + > 1. Therefore W(P)≤

3/4 + 1/2 + 1/3 < 5/3.

If < ≤ , then at most one more task with a utilization

2
1 2⁄

1– 12 7⁄ 1– 2
1 3⁄

1–

2
1 2⁄

1– u2 12 7⁄() 2 3⁄
1–

12 7⁄() 1 3⁄
1–

12 7⁄() 2 3⁄
1– u1

u2 12 7⁄() 1 3⁄
1–

12 7⁄() 2 3⁄
1–

12 7⁄() 1 3⁄
1– u2 2

1 3⁄
1– u3 12 7⁄() 1 3⁄

1–

12 7⁄() 2 3⁄
1– 12 7⁄() 1 3⁄

1– u2

2
1 3⁄

1– 12 7⁄() 1 3⁄
1– u3 2

1 3⁄
1–

12 7⁄() 1 3⁄
1–

12 7⁄() 2 3⁄
1– 12 7⁄() 1 3⁄

1–

2
1 3⁄

1– u2 12 7⁄ 1– u3 12 7⁄() 1 3⁄
1–

2
1 3⁄

1– u2 12 7⁄ 1– 12 7⁄() 1 3⁄
1– u3

2
1 3⁄

1–

2
1 3⁄

1– u3 u2

12 7⁄ 1–

12 7⁄ 1– u2 2
1 2⁄

1– u3 2
1 3⁄

1–

12 7⁄() 2 3⁄
1–

12 7⁄ 1– 12 7⁄() 2 3⁄
1– 12 7⁄ 1– 2

1 3⁄
1–

2
1 2⁄

1– u2 12 7⁄() 2 3⁄
1–

www.manaraa.com

104

greater thanδ and less than can be assigned to the processor, i.e.,m ≤ 3.

Therefore W(P)≤ 3/4 + 2/3 + 1/4 < 5/3.

If < ≤ 5/7, then no more task with a utilization greater thanδ

can be assigned to the processor, i.e.,m ≤ 2, since 2[] + δ > 1. Therefore

W(P) ≤ 3/4 + 3/4 < 5/3.

Case VI: 5/7 < ≤ 1. Since 5/7 < , the total utilization of the rest of the tasks is

less than1 − 5/7 = 2/7 < . Furthermore, since 5/7 + 2δ > 1, at most one more

task with a utilization less than can be assigned to the processor. Therefore

W(P) ≤ 1+ 3/8 < 5/3.

Let N and be number of processors required by RM-FFDU and the minimum

number of processors required to schedule a given setΣ of n tasks, respectively. Then the

total weight of the task set is given by . Since W(P)≥ 1 for every processor

in the RM-FFDU schedule, then ≥ N − 4. Since W(P)≤ 5/3 for every pro-

cessor in the optimal schedule, 5 /3≥ . Therefore, ≤ 5/3. ■

Proof of Theorem 3.17: We first claim that ≤ 5/3 underx ∈(0,

0.13477]. Forx ≤ 0.13477 = 6() − 0.6, if a processor is assignedn tasks, then (n +

1)() − x > 0.6 forn ≥ 5. If a processor is assigned six or more tasks, thenU ≥

6u > 0.6.

For 0.13477≤ x < 0.143492 = 5() − 0.6, if a processor is assignedn tasks,

then (n + 1)() − x > 0.6 forn ≥ 4. If a processor is assigned five tasks or more,

then U≥ 5x > 0.6. Now we need only to consider under x∈[0.14349, 1/2]

From Lemma 3.11 to Lemma 3.16, we conclude that ≤ 5/3. ■

Theorem 3.18: .

Proof: In order to prove that the bound is tight. We need to show that the upper

bounded number of processors is indeed required for some large task sets if they are sched-

uled by the RM-FFDU algorithm.

Let n = 15k, wherek > 0 is a natural number.

12 7⁄() 1 3⁄
1–

12 7⁄() 2 3⁄
1– u2

12 7⁄() 2 3⁄
1–

u1 u1

12 7⁄ 1–

12 7⁄ 1–

N0

W ui()
i 1=
n∑

W ui()
i 1=
n∑

N0 W ui()
i 1=
n∑ ℜRM FFDU–

∞

ℜRM FFDU–
∞

2
1 6⁄

1–

2
1 n 1+()⁄

1–

2
1 5⁄

1–

2
1 n 1+()⁄

1–

ℜFFDU
∞

ℜRM FFDU–
∞

ℜRM FFDU–
∞ 5

3
---=

www.manaraa.com

105

Then we can construct the following task set:

 = 0.2, fori = 1, 2,…, n.

In the completed RM-FFDU schedule, each processor is assigned three tasks since

0.2 > 2/ − 1. Therefore, a total ofn/3 processors is used to schedule the

task set, i.e.,N = n/3.

In the optimal schedule, each processor is assigned five tasks since 5 • 0.2 =1.

Hence, a total ofn/5 processors is used to schedule the task set, i.e., =n/5.

N / = 5/3.

Together with Theorem 3.17, we conclude that . ■

In this section, we propose a new heuristic algorithm for scheduling a set of fixed-

priority periodic tasks on a multiprocessor system. The worst case performance bound of

the algorithm is shown to be significantly lower than those in the literature. In fact, this

bound of 1.6667 is the lowest bound ever obtained for the RMMS problem.

3.8. Heuristic Algorithms Using the Necessary and Sufficient Condition

In the previous sections, we have developed and analyzed several scheduling algo-

rithms based on various schedulability conditions. While the algorithms are efficient with

either linear or time complexity, their performance may suffer because those

conditions are not necessary. Even though using the IFF condition may require more than

exponential time in some cases, we would like to know the performance of algorithms that

use the IFF condition. In the following we will study two algorithms, one on-line and the

other off-line, that use the IFF condition.

The first algorithm is an on-line one and it is called the Rate-Monotonic-First-Fit-

IFF (RM-FF-IFF). It is almost the same as the RM-FF algorithm, except that instead of the

UO condition, the IFF condition is used to schedule tasks. It is given in Figure 3.10.

All the theorems that are valid for RM-FF are valid for RM-FF-IFF because the IFF

condition is not only sufficient but also necessary. For this algorithm, we prove that its per-

ui

1 0.2+()
j 1=
3∏

N0

N0

ℜRM FFDU–
∞ 5

3
---=

O n nlog()

www.manaraa.com

106

formance is upper bounded by 1.96, as stated in the following theorem.

Theorem 3.19: Let N and N0 be the number of processors required by RM-FF-IFF

and the minimum number of processors required to feasibly schedule a given set of tasks,

respectively. Then N≤ 1.96N0 + 1.

Proof: Let Σ = { } be a set ofm tasks, with their utilizations

. Then the total utilization of the tasks is given by . Suppose that

among theN processors in the RM-FF-IFF schedule,ni is the number of processors to each

of which exactlyi ≥ 1 tasks are assigned. ThenN = . For convenience, we leta =

.

Among theN processors in the RM-FF-IFF schedule, for then1 processors to each

of which one task is assigned, we have by Theorem 3.3 that

 > > n1 / 2 − ln2 / 4. (Eq.3.42)

According to Lemma 3.2, among all processors on each of which at least two tasks

are assigned, there are at most one processor whose utilization is not greater than

2() = a. Hence,

≥ (Eq.3.43)

Since the total utilization of the task set must be equal to the total utilization of the

processors to which the tasks are assigned, we have

 = + .

Rate-Monotonic-First-Fit-IFF (RM-FF-IFF) (Input: task setΣ; Output:m)

Let the processors be indexed as P 1, P 2, ……, with each initially
idle. The tasks will be assigned in that order. To
assign , f ind the least j such that task can be feasibly sched-
uled on P j according to the IFF condition and assign to P j . Now
processor P j has one more task assigned on it.

τ1 τ2 …… τn, , ,
τi τi

τi

Figure 3.10: Algorithm RM-FF-IFF

τ1 τ2 … τm, , ,

u1 u2 … um, , , uii 1=
m∑

nii 1=
∞∑

2 2
1 2⁄

1– 
 

uii 1=

n1∑ n1 1 2
1 n1⁄

+ 
 

⁄

2
1 3⁄

1–

Uii 1=

N n1–∑ 2a N n1– 1–()

uii 1=
m∑ uii 1=

n1∑ Uii 1=

N n1–∑

www.manaraa.com

107

According to inequalities (3.42) and (3.43), it is immediate that

 ≥ n1 / 2 − ln2 / 4 + .

SinceN0 ≥ , we have

N0 ≥ 2aN − ln2 / 4− 1 − (2a − 0.5)n1.

Because any two of the tasks that are assigned to then1 processors cannot be sched-

uled on a single processor in the optimal schedule, we haveN0 ≥ n1.

ThenN0 ≥ 2aN − ln2 / 4− 1 − (2a − 0.5)n1 ≥ 2aN − ln2 / 4− (2a − 0.5)N0

(Eq.3.44)

Hence, ≤ = 1.96.

Forα = ≤ a, by arguments similar to the above one and the one

in the proof of Theorem 3.9, we obtain the rest of the results that are the same as listed in

Table 3.2. ■

The following theorem shows that the worst case bound for RM-FF-IFF cannot be

better than 1.72.

Theorem 3.20: ≥ = 1.72.

Proof: For any given , we construct a task set such that in the optimal schedule,

 processors are required while in the RM-FF-IFF schedule,N = +

processors are required to schedule.

Recall that the worst case utilization bound of can be achieved by the

following set ofn tasks:

Ci = (), Ti = , for i = 0,1, …, n − 1. Thesen tasks totally utilize

the processor in the time period of [0, 2]. The total utilization of then tasks is therefore

given byU = n ().

Next, we want to decide the number of tasks needed to have a total utilization of

close to but no greater than 1/2 for each of then tasks above. This number is given by

uii 1=
m∑ 2a N n1– 1–()

uii 1=
m∑

N
N0
------ 2a 0.5+

2a

2ln() 4⁄ 1+()
2a

-------------------------------------- 1
N0
------–≤

ℜRM FF– IFF–
∞ 2a 0.5+

2a

max1 i n≤ ≤ Ci Ti⁄()

ℜRM FF– IFF–
∞

1 1 2ln2()⁄+

N0

N0 N0 N0 2ln2()⁄

n 2
1 n⁄

1– 
 

2
i n⁄

2
1 n⁄

1– 2
i n⁄

2
1 n⁄

1–

www.manaraa.com

108

m = (Eq.3.45)

The task set which achieves the desired bound is given as follows:

It consists ofm • n tasks each with a utilization of andn tasks each with a

utilization of 1/2 +δ for any arbitrary small numberδ > 0. The tasks with larger utilizations

follow those with smaller utilizations.

For the tasks with smaller utilizations, they are divided intom groups each withn

tasks. A group ofn tasks is given by

Ci = (), Ti = , for i = 0, 1,…, n − 1.

Following these tasks aren tasks as given by

Ci = / () + δ, Ti = , for i = 0,…, n − 1.

In the RM-FF-IFF schedule, the firstm • n tasks will fill i processors, while the last

n tasks will fill n processors. HenceN = n + m.

In the optimal schedule,n processors are needed. The task assignment is arranged

in such a way that all the tasks with the same period are assigned to one processors, since

m() + 1/2 +δ ≤ 1 for sufficiently smallδ. Hence =n.

N / = (n + m) / n = 1 + /n → whenn → ∞.

Therefore we have proven that ≥ . ■

The second algorithm is an off-line one and it is called the Rate-Monotonic-First-

Fit-Decreasing-Utilization-IFF (RM-FFDU-IFF). Before it schedules the tasks, RM-

FFDU-IFF first sorts the tasks in the order of non-increasing task utilization. It is almost the

same as the RM-FFDU algorithm, except that instead of the UO condition, the IFF condi-

tion is used to schedule tasks. It is given in Figure 3.11.

0.5 2
1 n⁄

1– 
 

⁄

2
1 n⁄

1–

2
i n⁄

2
1 n⁄

1– 2
i n⁄

2
i n⁄

2
1 n⁄

1– 2
i n⁄

2
i n⁄

2
1 n⁄

1– N0

N0 0.5 2
1 n⁄

1– 
 

⁄ 1 1 2ln2()⁄+

ℜRM FF– IFF–
∞

1 1 2ln2()⁄+

Rate-Monotonic-First-Fit-IFF (RM-FF-IFF) (Input: task setΣ; Output:m)

Sort the tasks in the order of non-increasing task utilization.
Call RM-FF-IFF

Figure 3.11: Algorithm RM-FFDU-IFF

www.manaraa.com

109

Theorem 3.21: ≤ 5/3.

This is true by Theorem 3.17.

The following theorem shows that the worst case bound for RM-FF-IFF cannot be

better than 1.44.

Theorem 3.22: ≥ = 1.44.

Proof: For any given , we construct a task set such that in the optimal schedule,

 processors are required while in the RM-FFDU-IFF schedule,N = proces-

sors are required to schedule it.

Let n > 100 is an integer,k > 0 is an integer, andm is determined by

m= (Eq.3.46)

A set ofm • n • k tasks which achieves the desired bound is given as follows:

It consists ofm • k groups of tasks. Each group hasn tasks in it. All them • k groups

are identical. A group ofn tasks is given by

Ci = (), Ti = , for i = 0, 1,…, n − 1.

Since all tasks have the same utilization, we can assume that the order of the tasks

after sorting is the same as it is given.

In the RM-FFDU-IFF schedule, each group of tasks is assigned to one processors.

A total ofm • k processors is used in the RM-FFDU-IFF schedule, i.e.,N = m • k.

In the optimal schedule, a total ofn • k processors is used, i.e., =n • k.

Therefore,N / = m / n = / n → 1/ln2.

≥ . ■

We have reason to believe that the worst case performance bounds for RM-FF-IFF

and RM-FFDU-IFF can be further improved. We conjecture that the upper bound for RM-

FF-IFF can be lowered to1.86 and the upper bound for RM-FFDU-IFF can be further

reduced to 1.5.

ℜRM FFDU– IFF–
∞

ℜRM FFDU– IFF–
∞

1 ln2()⁄

N0

N0 N0 ln2()⁄

1 2
1 n⁄

1– 
 

⁄

2
i n⁄

2
1 n⁄

1– 2
i n⁄

N0

N0 1 2
1 n⁄

1– 
 

⁄

ℜRM FFDU– IFF–
∞

1 ln2()⁄

www.manaraa.com

110

3.9. Average Case Performance Evaluation

In the previous sections, the performance bounds of the new algorithms were

derived under worst case assumptions. While a worst case analysis assures that the perfor-

mance bounds are satisfied for any task set, it does not provide insight into the average case

behavior of the algorithms. Do the algorithms perform on the average close to its worst case

performance? Do the worst case performance rankings of the algorithms stand as they are

in the average case? To answer these questions, one can analyze the algorithms with prob-

abilistic assumptions, or conduct simulation experiments. Since a probabilistic analysis of

the algorithms is beyond the scope of this thesis, we resort to simulation.

The simulation is conducted by running the algorithms on a large number of com-

puter generated sample task sets and averaging the results over a number of runs. The task

sets are generated by using one of the random number generators, which can generate num-

bers with very good approximation to the uniform distribution. The number of runs for each

data point is chosen mostly to be 20 or more, since for our experiments, 20 runs is large

enough to counter the effect of “randomness”.

The simulation consists of three stages. In the first stage, we will compare the per-

formance of all on-line algorithms. In the second stage, we will compare the performance

of all off-line algorithms. Finally, a different approach is used to evaluate the performance

of various algorithms.

3.9.1. Performance Comparison of New and Existing On-line Algorithms

We present simulation experiments for large task sets with100≤ n ≤ 1000 tasks. In

each experiment, we vary the value of parameterα  the maximal load factor of any task

in the set, i.e.,α = . The task periods are assumed to be uniformly distributed

with values 1≤ Ti ≤ 500. The run-times of the tasks are also taken from a uniform distribu-

tion with range1 ≤ Ci ≤ αTi. The performance metric in all experiments is the number of

processors required to execute a given task set. We first compare the performance of the

maxi Ci Ti⁄()

www.manaraa.com

111

following on-line algorithms:

• RMNF [20]

• NF-M [16]

• RMGT-M (Section 3.6)

• RM-FF (Section 3.3)

• RM-FFF-IFF (Section 3.8)

Since an optimal schedule cannot be calculated for large task sets, we use the total

utilization (or load)U = of a task set as the lower bound for the number of

processors required. Except for certain figures, each data point in all figures in this section

represents the average value of 20 runs of an algorithm on independently generated task

sets with identical parameters. All algorithms are executed on identical task sets. The

results are plotted in Figure 3.12 forα = 0.2, Figure 3.13 forα = 0.5, Figure 3.14 forα =

0.7, and Figure 3.15 forα = 1.0.

From the experiments, we conclude that

• All the new on-line algorithms outperform the existing ones.

Ci Ti⁄
i 1=
n∑

Figure 3.12: Performance of Some On-line Algorithms (α = 0.2)

www.manaraa.com

112

• RM-FF-IFF outperforms all other algorithms, though it takes a considerably

large amount of time to compute the results. The larger the ratio between any

two task periods, the longer time RM-FF-IFF takes to compute the results.

Figure 3.13: Performance of Some On-line Algorithms (α = 0.5)

Figure 3.14: Performance of Some On-line Algorithms (α = 0.7)

www.manaraa.com

113

• The performance of RMGT-M gets better asα becomes smaller, while the op-

posite holds for RM-FF even though the improvement in RM-FF seems small.

• The number of processors required to schedule a given task set grows propor-

tionally with the number of tasks in the set. The number of processors required

to schedule a set of tasks also grows proportionally with the value ofα.

Since we only show the performance of three new algorithms in the previous exper-

iment, there are some others that need to be considered. We chose to compare the perfor-

mance of RM-FF against that of others for good reason. As it will be shown, the

performance of RM-FF is quite representative of the several algorithms considered below:

• RM-FF (Section 3.3)

• RM-BF (Section 3.4)

• RRM-FF (Section 3.5)

• RRM-BF (Section 3.5)

All these algorithms are executed on the same task sets as previously used. The

results are plotted in Figure 3.16 forα = 0.3, Figure 3.17 forα = 0.7, and Figure 3.18 forα

Figure 3.15: Performance of Some On-line Algorithms (α = 1.0)

www.manaraa.com

114

= 1.0.

The following conclusion is accordingly made

• RM-FF and RM-BF perform almost identically, and so do RRM-FF and

RRM-BF. RM-BF performs a little bit better than RM-FF in some cases.

• RRM-FF and RRM-BF outperform RM-FF and RM-BF whenα is large.

• Whenα is small (but not smaller), RM-FF and RM-BF performs better than

RRM-FF and RRM-BF. The performance of RRM-FF(-BF) and that of RM-

FF(-BF) becomes identical whenα reaches the threshold value, which is

() in our experiments.

3.9.2. Performance Comparison of New and Existing Off-line Algorithms

Just as we have done for the on-line algorithms in the previous sub-section, we sim-

ulate the performance of the new and existing off-line algorithms following the same strat-

egy. We compare the performance of the following algorithms:

• RMFF [20]

Figure 3.16: Performance of RM-FF, RM-BF, RRM-FF, and RRM-BF (α = 0.3)

2
1 3⁄

1–

www.manaraa.com

115

• FFDUF [17]

• RMST (Section 3.6)

Figure 3.17: Performance of RM-FF, RM-BF, RRM-FF, and RRM-BF (α = 0.7)

Figure 3.18: Performance of RM-FF, RM-BF, RRM-FF, and RRM-BF (α = 1.0)

www.manaraa.com

116

• RMGT (Section 3.6)

• RM-FFDU (Section 3.7)

• RM-FFDU-IFF (Section 3.8)

The same task sets as used in the previous experiments are run through these off-

line algorithms. The results are plotted in Figure 3.19 forα = 0.2, Figure 3.20 forα = 0.5,

Figure 3.21 forα = 0.7, Figure 3.22 forα = 1.0.

From the experiments, we conclude that

− Except for RMST and RMGT whenα is large, all the new algorithms outper-

form those existing ones.

− Except whenα is small, i.e,α < 0.25, RM-FFDU-IFF outperforms all other

algorithms. Again, RM-FFDU-IFF takes considerably more time to compute

the results.

− The performance of RM-FFDU-IFF and RM-FFDU improves asα becomes

larger, while the performance of RMST and RMGT degrades.

− RMST and RMGT performs the best whenα is small, i.e,α < 0.25. Of course,

the performance of RMST and RMGT is identical whenα < 1/3.

− Though the performance of RM-FFDU and FFDUF is quite close, RM-FFDU

performs consistently better than FFDUF.

− RMGT still performs quite well whenα < 0.7.

3.9.3. Yet Another Performance Evaluation of the Algorithms

The total utilization (load) of a task set is given by , which can be con-

sidered as the minimum number of processors required to execute the task set. It is a lower

bound on the number of processors to be computed. The number of processors used to exe-

cute a task set is more than twice its total utilization in some cases for some algorithms.

This comparison may be overly pessimistic, since the optimal number of processors may

Ci Ti⁄
i 1=
n∑

www.manaraa.com

117

differ from the total utilization greatly in some cases, and little in other cases. Therefore,

using the total utilization of the task set as a baseline for performance comparison may not

capture the whole picture. The ideal solution would be to find the optimal number of pro-

Figure 3.19: Performance of Off-line Algorithms (α = 0.2)

Figure 3.20: Performance of Off-line Algorithms (α = 0.5)

www.manaraa.com

118

cessors for any given task set. This will, however, require at least exponential time with

respect to the number of tasks using existing techniques, since the scheduling problem is

Figure 3.21: Performance of Off-line Algorithms (α = 0.7)

Figure 3.22: Performance of Off-line Algorithms (α = 1.0)

www.manaraa.com

119

NP-complete.

This observation leads us to the employment of a different methodology. Under this

methodology, a task set is generated randomly with the constraint that in the optimal sched-

uling, it fully utilizes a known number of processors. In other words, givenm processors

and the average number of tasks to be run on each processor, we generate a set of tasks that

fully utilizes m processors in the optimal schedule. This is accomplished in the following

steps:

(1)M arrays of random numbers are generated. The sizes of the arrays are uniformly

generated, with a mean value corresponding to the average number of tasks on

a processor.

(2) Each item in an array is divided by the sum of all items in its array to obtain a

number between 0 and 1, which corresponds to the utilization of a task.

(3) For each of them arrays, a number is generated as the period of all the tasks in

that array. The numbers are randomly generated between 1 and 100.

(4) A number is randomly selected from them arrays of numbers and then output

as the utilization of a task. The computation time of the task is the product of its

utilization and its period. This process of random outputting of tasks is repeated

until all numbers in them arrays are picked.

Using this methodology to generate task sets, the performance of some of the algo-

rithms is plotted in Figure 3.23 and Figure 3.24. The average number of tasks assigned on

a processor in the optimal schedule is selected to be 3 in Figure 3.23 and 6 in Figure 3.24.

Each data point is the average value of 20 independently generated task sets with identical

parameter. On the x-axis, the number of processors is the optimal number of processors

required to execute a task set. On the y-axis, the extra percentage of processors is defined

as (−) / , where is the number of processors required by a scheduling algo-

rithm A to schedule the same task set. Note that the performance of the algorithms is con-

sistent with that previously shown. With these figures, we have a better idea of what

N0

NA N0 N0 NA

www.manaraa.com

120

percentage of extra processors is needed for each algorithm for a given task set.

From the experiments, we conclude that

− The performance of most of the algorithms is quite good on the average, using

Figure 3.23: Performance of Some Algorithms (Tasks/processor = 3)

Figure 3.24: Performance of Some Algorithms (Tasks/processor = 6)

www.manaraa.com

121

less than 70% extra percentage of processors.

− The performance of RM-FFDU, RRM-FF, and RM-FFDU-IFF degrades a lit-

tle bit as the number of tasks assigned on each processor becomes larger, i.e.,

the average task utilization decreases.

In the above experiments, we only consider the performance of the algorithms for

large number of processors. In many practical applications, the total number of processors

used may be less than 20 processors. In order to assess how some of the algorithms perform

under this condition, we conduct similar experiments, the results of which are given in Fig-

ure 3.25 and Figure 3.26. Note that each data point represents the average value of 40 inde-

pendent runs withM = 4. It is apparent that except for RMGT-M and NF-M whose

performance depends on the value ofM, the performance of the rest of the algorithms is

quite consistent. Therefore, we can conclude that most of the algorithms are suitable for

applications requiring few processors as well.

Figure 3.25: Performance of Some Algorithms (Tasks/processor = 3)

www.manaraa.com

122

3.10. Summary

In this chapter, we have proposed a number of scheduling algorithms for the RMMS

problem. All the algorithms are analyzed with respect to the worst case performance, and

simulated for average case performance. Though some algorithms are better than others in

the worst case, each of them has advantages that others do not.

− The algorithms based on the IFF condition outperform others in most of the

cases. Yet it is time-consuming to execute these algorithms.

− The algorithms based on the UO condition have very good and consistent per-

formance. Furthermore, they are simple and fast in execution.

− RMGT and RMGT perform best when the utilization of each task is small.

Figure 3.26: Performance of Some Algorithms (Tasks/processor = 6)

www.manaraa.com

123

Chapter 4 Supporting Fault-Tolerance in Rate-Mono-
tonic Scheduling

In this chapter, we address the problem of supporting timeliness and dependability

at the level of task scheduling. We consider the problem of scheduling a set of tasks, each

of which, for fault-tolerance purposes, has multiple versions, onto the minimum number of

processors. On each individual processor, the task deadlines are guaranteed by the rate-

monotonic algorithm. A simple on-line allocation heuristic is proposed. It is proven thatN

≤ 2.33N0 + κ, whereN is the number of processors required to feasibly schedule a set of

tasks by the heuristic,N0 is the minimum number of processors required to feasibly sched-

ule the same set of tasks, andκ is the maximum redundancy degree of a task. The bound is

also shown to be nearly tight. The average case behavior of the heuristic is studied through

simulation. Experimental data show that the heuristic performs surprisingly well on the

average.

There are two general approaches to achieve fault-tolerance under RM Scheduling

(RMS). The first approach [21] considers processor failures only; a set of periodic tasks is

assigned to a processor such that their deadlines are met with the assumption that the pro-

cessor is fault-tolerant. The fault-tolerant processor may be implemented by such hardware

redundancy techniques as the TMR, where triple processors are used to execute the same

tasks and the final results are decided upon through voting mechanisms. The major draw-

“Do not venture all your eggs in one basket.”
-- Spanish Proverb

www.manaraa.com

124

backs of this approach are: (1) tasks are treated uniformly. In practise, however, some tasks

may be more critical than others, and their correctness should be ensured by all means,

while others may be allowed to miss their deadline occasionally. (2) Resources (e.g., pro-

cessors) are under-utilized. (3) Possible task errors cannot be prevented from causing total

system failures. The second approach can, in theory, tolerate processor failures as well as

task errors. Under this approach, a task is replicated or implemented using several versions.

The copies or versions of a task are executed on different processors in order to tolerate pro-

cessor failures. Multiple versions of a task are executed so that possible task errors can be

tolerated if they are not the same [2]. Since this approach is more general in the sense that

the degree of redundancy on the task level and the processor level is allowed to be different

and the tolerance of task errors is taken into account, we focus on this approach in the rest

of the chapter and study its effectiveness when it is combined with the RMS.

For this approach to work, it is apparent that copies or versions of a task should be

assigned to different processors and the total number of processors used should be mini-

mized. The importance of minimizing the number of processors used to accommodate a set

of tasks should not be under-estimated. First, more processors will introduce more proces-

sor failures, under probability. Second, more processors will affect the cost, weight, size,

and power consumption of the whole system, the increase of any of which may jeopardize

the success of the whole application. Therefore, we want to minimize the number of pro-

cessors required to schedule a set of replicated, periodic tasks such that the timeliness and

reliability of the system is guaranteed.

Although it is quite straightforward to assign copies or versions of a task to different

processors is quite straightforward, it is non-trivial to minimize the number of processors

used to schedule a set of tasks. In fact, the minimization problem has been proven to be NP-

complete even in the case where each task has only one copy [43]. However, this fact does

not make the problem go away; rather it requires that heuristic algorithms must be devel-

oped to solve it. In the following, we propose a simple scheduling algorithm to solve the

www.manaraa.com

125

problem. We then analyze the performance of the algorithm under worst case assumption,

and show that in the worst cases, the number of processors used by the heuristic algorithm

is no more than 2.33 times that of an optimal algorithm. This is, to our knowledge, the first

nearly tight bound obtained for this particular problem. We are also interested in the aver-

age case behavior of the algorithm. Simulation results show that the algorithm performs

very well on the average. We believe that this is an important step towards building fault-

tolerant real-time systems based on the RMS theory.

4.1. Task Model

The Rate-Monotonic Scheduling theory was developed under a set of assumptions.

These assumptions, along with the new requirement of task redundancy, are stated as fol-

lows:

(A) Each task hasκ versions, whereκ is a natural number. Theκ versions of a task

may have different computation time requirements, and theκ versions may be

merely copies of one implementation or truly versions of different implemen-

tations.

(B) All versions of each task must be executed on different processors.

(C) The requests of all tasks are periodic with constant intervals between requests.

The request of a task consists of the requests of all its versions, i.e., all versions

of a task are ready for execution when its request arrives.

(D) Each task must be completed before the next request for it arrives, i.e., all its

versions must be completed at the end of each request period.

(E) The tasks are independent in the sense that the requests of a task do not depend

on the initiation or the completion of requests for other tasks.

Assumptions (A) and (B) make a rather general statement about the redundancy

schemes used by each task. The term “version” has been used inN-version programming

[2] to denote multiple implementations of a task. However, for the sake of convenience, it

www.manaraa.com

126

is used here to denote both true versions of a task and mere copies of a single task version.

In the case of using merely duplicated copies, the errors produced by a task cannot be tol-

erated, since all the versions, or merely duplicated copies, produce the same results. But

processor failures can be tolerated by using mere copies of a task. Here we are not con-

cerned with details about what faults are to be tolerated or how faults are tolerated, rather

we make the general statement that for fault-tolerance purposes, each task has a number of

versions that must be executed on different processors. Note that the number of versions

used by each task may be different, i.e., each may assume a different value.

Assumptions (C), (D), and (E) represent a simplified model of most practical real-

time applications. This basic model may not be of much practical relevance if it cannot be

extended to accommodate other requirements. Recently this model has been adapted and

extended in many aspects by researchers in solving practical problems [8, 69, 72].

FT-RMMS Scheduling Problem: a set ofn tasksΣ = is given

with for i = 1, 2,…, n, where are

the computation times of the versions of taskτi. , , and are the release time, dead-

line, and period of taskτi, respectively. The question is to schedule the task setΣ using the

minimum number of processors such that all the task deadlines are met and all versions of

a task execute on different processors.

An optimal algorithm is the one that always uses the minimum number of proces-

sors to execute any given task set. According to Assumption (D), the deadline of each task

coincides with its next arrival. For periodic task scheduling, it has been proven [46] that the

release times of tasks do not affect the schedulability of the tasks. Therefore, release time

 and deadline can be safely omitted when we consider solutions to the problem. =

 / is the utilization (or load) of thejth version of taskτi. = is the

utilization (or load) of taskτi.

κi

τ1 τ2 … τn, , ,{ }

τi Ci1 Ci2 … Ciκi
, , ,() Ri Di Ti, , ,()= Ci1 Ci2 … Ciκi

, , ,

κi Ri Di Ti

Ri Di uij

Cij Ti ui Cij Ti⁄
j 1=

κi∑

www.manaraa.com

127

4.2. The Design and Analysis of FT-Rate-Monotonic-First-Fit

Since the result of by Bannister and Trivedi [5] is very

attractive in view of workload distribution among the processors, it is quite tempting to

expect that based on their algorithm, a good heuristic could be developed to solve the FT-

RMMS problem. Even though no schedulability test is introduced in their algorithm, it can

be added. The restriction that all tasks have the same number of clones and all versions of

a task have the same computation time can be relaxed. The major problem left is to mini-

mize the number of processors. We accomplish this by using a binary search technique.

The design of the heuristic consists of two steps: first, assumingm number of pro-

cessors is sufficient for the execution of the task setΣ, Algorithm 0 is used to assign ver-

sions of tasks to different processors such that versions of a task are assigned to different

processors, and the set of assigned tasks on each processor is schedulable under the RM

algorithm. Second, a binary search technique, Algorithm 1, is used to find the minimum

number of processors that is possible under Algorithm 0.

The lower bound for the number of processors that is sufficient to execute the task

set is given by , which is the total load of the task set, without con-

sidering the fault-tolerant constraint that versions of a task be assigned on different proces-

sors. The upper bound is given by , which is equal to the total

number of tasks times the maximum number of versions of a task. The correctness of the

9m() 8 m r– 1+()()⁄

Algorithm 0 (Input: task setΣ, m; Output:success)

(1) Initialize = 0 for 1 ≤ i ≤ m, and t = 1.
(2) Assign the versions of task t simultaneously to the least

utilized processors, and increment the utilization for each
processor i to which a version of task t has been assigned by

, where . If > , where l is the
number of versions having been assigned to processor i, Then

success = FALSE, return. Otherwise, t = t + 1.
(3) If t > n Then success = TRUE, return. Otherwise, go to (2).

Ui

κi κi

Ctj Tt⁄ j 1 2 … κt, , ,{ }∈ Ui l 2
1 l⁄

1– 
 

Figure 4.1: Algorithm 0

Cijj 1=

κi∑ 
  Ti⁄

i 1=
n∑

n max 1 i n≤ ≤()× κi{ }

www.manaraa.com

128

algorithm is self-evident.

Theorem 4.1: Let N and N0 be the number of processors required by Algorithm

1 and the minimum number of processors required to feasibly schedule a set of tasks. Then

N / N0 ≥ C, where C is any given number.

Proof: This theorem is proven by constructing task sets that can achieve the bound.

Let the maximum number of versions of a task beκ ≥ 1. Then for any givenC ≥ 2, the fol-

lowing task set is constructed:

The task set has a total ofC tasks, each havingκ versions. Versions of a task have

the same utilization. For the first (C − 1) tasks, the utilization is given by a very small num-

berε > 0. The utilization of theCth task is given by . Sinceε +

> , none of the first (C − 1) tasks can be scheduled together with theCth task.

Therefore, a total ofC • κ processors are used by Algorithm 1, while the optimal algorithm

uses onlyκ processors, ifε < [1 −] / (C − 1). Therefore,N = C •κ, N0 = κ,

andN/N0 ≥ C. ■

The worst case performance of Algorithm 1 is very poor; it may be caused by the

incompatibility of the allocation algorithm and the binary search strategy. A new algorithm

based on a bin-packing heuristic is thus developed to obtain better solution. This new algo-

rithm allocates versions of tasks to processors in the similar manner as bin-packing heuris-

tics pack items into bins, with the exception that versions of a task cannot be assigned on a

processor.

Algorithm 1 (Input: task setΣ; Output:m)

(1) LowerBound = ; UpperBound = ;
(2) m = (LowerBound + UpperBound) / 2 ; If (LowerBound = m) Then {m

= m + 1; EXIT};
(3) Invoke Algorithm 0(Σ,m,success); If success Then UpperBound = m

Else LowerBound = m.Goto (2).

Cijj 1=

κi∑ 
 

Ti⁄
i 1=
n∑ n max 1 i n≤ ≤{ } κi{ }×

Figure 4.2: Algorithm 1

2 2
1 2⁄

1– 
 

2 2
1 2⁄

1– 
 

2 2
1 2⁄

1– 
 

2 2
1 2⁄

1– 
 

www.manaraa.com

129

Bin-packing algorithms [15] are a class of well-studied heuristic algorithms, which

perform well for the assignment of variable-size items into fixed-size bins. However, bin-

packing heuristics cannot be directly applied to solving the FT-RMMS problem, since there

are two major differences involved. First, the full utilization of a processor cannot be

always achieved for a set of periodic tasks scheduled by the RM algorithm. In other words,

the allocation of tasks to processors is equivalent to packing items into bins with dynamic

sizes. Second, the fault-tolerant requirement that versions of a task cannot be assigned onto

a processor further complicates the problem. Some modifications of the bin-packing heu-

ristics are necessary. Here we choose to study the following heuristic, which is based on the

First-Fit bin-packing heuristic for its simplicity and effectiveness.

Let the processors be indexed asP1, P2, …, with each initially in the idle state, i.e.,

with zero utilization. The tasks will be scheduled in that order. κ is the

maximum number of versions of a task, i.e.,κ = . To schedule a versionν

of taskτi, find the leastj such thatν, together with all the tasks (versions) that have been

assigned to processor Pj, can be feasibly scheduled according to the RM condition for a sin-

gle processor, and assign task versionν to Pj. When there is no confusion, we sometimes

refer to a version belonging to a taskτi simply as taskτi.

When the algorithm returns, the value ofm is the number of processors required to

execute a given set of tasks. Since an idle processor will not be used until all the processors

with some utilizations cannot accommodate a new task, it is therefore expected that FT-

RM-FF would have better performance than that of Algorithm 1, which is indeed the case

as shown by Theorem 4.2. Before proving the upper bound, however, a number of lemmas

need to be established.

For clarity purposes, we use a slightly different notations in the proofs below. The

versions belonging to a task are referred to as tasks belonging to a task group. Just as ver-

sions belonging to the same task should be allocated on different processors, so should

tasks belonging to a task group. According,κ is the maximum number of tasks in a task

τ1 τ2 … τn, , ,{ }

max 1 i n≤ ≤{ } κi

www.manaraa.com

130

group, i.e.,κ = .

Lemma 4.1: Suppose the maximum number of tasks in a group isκ. Among all the

processors on which n≥ c ≥ 1 tasks are assigned, there are at mostκ processors, each of

which has a utilization less than or equal to .

Proof: The lemma is proven by contradiction. Suppose there areκ + 1 processors

each of which has a utilization less than or equal to , and letP1, P2, …,

 be theκ + 1 such processors, andni be the number of tasks assigned to processorPi

with ni ≥ c. Let be the utilization of thejth task that is assigned to processorPi, for 1≤

i ≤ κ + 1 and 1≤ j ≤ ni. Then ≤ , for 1≤ i ≤ κ + 1.

For 1≤ x ≤ , if ≥ , then there exists a task with a uti-

lization ≤ , since there are totally ≥ c tasks on each proces-

sor and ≤ , wherex ≠ y and1 ≤ y ≤ . In other words,

there exists a task on processor satisfying ≤ with

.

Since + ≤ + = (c + 1)

 for 1 ≤ i ≤ κ, and cannot be assigned on processorPi, there must

FT-Rate-Monotonic-First-Fit (FT-RM-FF) (Input: task setΣ; Output:m)

(1) Set i = 1 and m = 1. /* i denotes the ith task, m the number of
processors allocated */

(2) (a) Set l = 1. /* l denotes the lth version of task τi */
(b) Set j = 1. If the lth version of task i together with the

versions that have been assigned to processor can be fea-
sibly scheduled on according to the RM condition for a
single processor and no version of task i has been previously
assigned to processor , assign the lth version of task i
to . Otherwise, j = j + 1 and go to step 2(b).

(c) If l > , i.e., all versions of task i have been scheduled,
then go to Step 3. Otherwise, increment l = l + 1, and go to
Step 2(b).

(3) If j > m, then set m = j. If i > n, i.e., all tasks have been
assigned, then return. Otherwise i = i + 1 and go to Step 2(a).

Pj
Pj

Pj
Pj

κi

Figure 4.3: Algorithm FT-RM-FF

max 1 i n≤ ≤{ } κi

c 2
1 c 1+()⁄

1– 
 

c 2
1 c 1+()⁄

1– 
 

Pκ 1+

ui j,

ui j,j 1=

ni∑ 2
1 c 1+()⁄

1– 
 

nκ 1+ uκ 1+ x, 2
1 c 1+()⁄

1– 
 

uκ 1+ y, 2
1 c 1+()⁄

1– 
 

nκ 1+

uκ 1+ j,j 1=

nκ 1+∑ c 2
1 c 1+()⁄

1– 
 

nκ 1+

τκ 1+ z, Pκ 1+ uκ 1+ z, 2
1 c 1+()⁄

1– 
 

z 1 2 … nκ 1+, , ,{ }∈

ui j,j 1=

ni∑ uκ 1+ z, c 2
1 c 1+()⁄

1– 
 

2
1 c 1+()⁄

1– 
 

2
1 c 1+()⁄

1– 
 

uκ 1+ z,

www.manaraa.com

131

exist one and only one taskτi,j among that belongs to the same

group as does, for alli = 1, 2, …, κ. In other words, the task group that contains

task hasκ + 1 tasks. This is a contradiction to the assumption that the maximum

number of tasks in any group isκ. Therefore the lemma must be true. ■

Lemma 4.2: If m tasks cannot be feasibly scheduled on processors accord-

ing to FT-RM-FF, andκ > 1, then the utilization factor of the m tasks is greater than2(m

− κ) for κ < m ≤ 2κ; or m for m> 2κ.

Proof: For κ = 1, the lemma is true by Lemma 3.1. Forκ ≥ 2, there are two cases

to consider:

Case 1: κ < m < 2κ. Then > 2(m − κ) , whereui is the utiliza-

tion of taskτi.

Since there arem > κ tasks in total, these tasks must belong to at least two different

task groups. Suppose that the least number of tasks in a group among thesem tasks isp.

Since thesep tasks cannot be scheduled together with any other tasks on a single processor,

we have

ui + > 2 , (Eq.4.1)

for i = 1, 2,…, p andj = 1, 2,…, m − p, whereuis are the utilizations of the p tasks, and

s the utilizations of the rest of the tasks (see Figure 4.4).

Apparently, = + . Summing up thep(m − p) inequali-

ties in (4.1) yields

p + (m − p) > 2p(m − p) . (Eq.4.2)

τi j, j 1 2 … ni, , ,={ }

uκ 1+ z,

τκ 1+ z,

m 1–

2
1 2⁄

1– 
 

2
1 2⁄

1– 
 

uii 1=
m∑ 2

1 2⁄
1– 

 

uj' 2
1 2⁄

1– 
 

uj'

m − p

Figure 4.4: Task Configuration whenκ < m ≤ 2κ

p

κ m − κ

∑ui′ ∑ui

uii 1=
m∑ ui

′
i 1=
m p–∑ uii 1=

p∑

ui
′

i 1=
m p–∑ uii 1=

p∑ 2
1 2⁄

1– 
 

www.manaraa.com

132

If p ≥ m − p, then

p(+) ≥ p + (m− p) > 2p(m− p) .

Therefore, = + > 2 (m − p) . Sincep ≤ κ,

we havem − p ≥ m − κ. > 2(m − κ) .

If p < m − p, then there are two sub-cases to consider. If p ≥ m − κ, then from ine-

quality (4.2), we have (m− p)(+) ≥ p + (m− p) > 2

p (m − p) . In other words, = + > 2p

≥ 2(m − κ) , sincep ≥ m − κ by assumption. Ifp < m − κ, then there must exist

(m− κ − p) tasks, which belong to some task groups that are different from the task groups

the rest of theκ tasks belong to. For each of the (m− κ) tasks as shown in Figure 4.5, it can

be paired with some of the (m− κ) distinctive tasks among the rest of theκ tasks, such that

we have

ui + > 2 , fori = 1, 2,…, m − κ andj = 1, 2,…, m − κ.

= + ≥ + > 2(m − κ) .

Case 2:m > 2κ. Then >m . Proving this claim is equivalent to

proving the following:

Suppose that the total number of task groups isγ with γ > 2, and the maximum num-

ber of tasks in a group isκ, then form > 2κ, > m .

We prove this claim by using induction on the number of tasks in a group among

the γ task groups. First,m = γ, i.e.,γ > 2κ. Since each task belongs to a different group,

 > m according to Lemma 3.1.

Suppose that >m is true forqi ≤ pi, whereqi is the number of

ui
′

i 1=
m p–∑ uii 1=

p∑ ui
′

i 1=
n p–∑ uii 1=

p∑ 2
1 2⁄

1– 
 

uii 1=
m∑ ui

′
i 1=
m p–∑ uii 1=

p∑ 2
1 2⁄

1– 
 

uii 1=
m∑ 2

1 2⁄
1– 

 

ui
′

i 1=
m p–∑ uii 1=

p∑ ui
′

i 1=
m p–∑ uii 1=

p∑
2

1 2⁄
1– 

 
uii 1=

m∑ ui
′

i 1=
m p–∑ uii 1=

p∑ 2
1 2⁄

1– 
 

2
1 2⁄

1– 
 

n − p

Figure 4.5: Task Configuration when2κ < m

p+1

∑ui′ ∑ui

uj
′

2
1 2⁄

1– 
 

uii 1=
m∑ u

′
κ∑ u

m κ–∑ u
′

m κ–∑ u
m κ–∑ 2

1 2⁄
1– 

 

uii 1=
m∑ 2

1 2⁄
1– 

 

uii 1=
m∑ 2

1 2⁄
1– 

 

uii 1=
m∑ 2

1 2⁄
1– 

 

uii 1=
m∑ 2

1 2⁄
1– 

 

www.manaraa.com

133

tasks belonging to task groupi, pi ≥ 1 is a constant number, for 1≤ i ≤ γ, and =n

≥ m. Then for a newly added task belonging to task groupj, it is equivalent to saying that

qj = pj + 1, orm = n + 1. The newly added task cannot be scheduled on any of them pro-

cessors. Let denote the newly added task with utilization . Sincem≤ n, m > 2κ,

andκ > pj, thenn > 2pj. For convenience, we letp = pj.

If ≤ (p + 1) , then

(p + 1) + (n − p) > 2(p + 1)(n − p) .

(p + 1)(+) + (n − 2p − 1)

> (p + 1) (n + 1) + (p + 1) (n − 2p − 1) .

 + > (n + 1) + (n − 2p − 1) [(p + 1) −].

Sincen − 2p − 1 ≥ 0,

 = + > (n + 1) .

If > (p + 1) , there are two sub-cases to consider.

If ≥ , then = + > n +

 = (n + 1) .

If < , then = + > (p + 1) (we

assume = for convenience). >p . Since cannot be

scheduled together with any of then − p tasks on any processor, + (n − p)

> 2(n − p) .

 = + = + +

> 2(n − p) + p − (n − p − 1)

= (n + 1) + (n − p − 1) (−) ≥ (n + 1) , since

n > p + 1. ■

Theorem 4.2: Let N and N0 be the number of processors required by FT-RM-FF

and the minimum number of processors required to feasibly schedule a set of tasks, respec-

tively. Then N≤ (/) N0 + κ, whereκ is the maximum num-

ber of tasks in a task group. Hence2.2833≤ ≤ 2.33.

pii 1=
γ∑

τn 1+ un 1+

uii 1=
p 1+∑ 2

1 2⁄
1– 

 

ui
′

i 1=
n p–∑ uii 1=

p 1+∑ 2
1 2⁄

1– 
 

ui
′

i 1=
n p–∑ uii 1=

p 1+∑ uii 1=
p 1+∑

2
1 2⁄

1– 
 

2
1 2⁄

1– 
 

ui
′

i 1=
n p–∑ uii 1=

p 1+∑ 2
1 2⁄

1– 
 

2
1 2⁄

1– 
 

uii 1=
p 1+∑

uii 1=
m∑ ui

′
i 1=
n p–∑ uii 1=

p 1+∑ 2
1 2⁄

1– 
 

uii 1=
p 1+∑ 2

1 2⁄
1– 

 

un 1+ 2
1 2⁄

1– 
 

uii 1=
m∑ uii 1=

n∑ un 1+ 2
1 2⁄

1– 
 

2
1 2⁄

1– 
 

2
1 2⁄

1– 
 

un 1+ 2
1 2⁄

1– 
 

uii 1=
p 1+∑ uii 1=

p∑ un 1+ 2
1 2⁄

1– 
 

un 1+ up 1+ uii 1=
p∑ 2

1 2⁄
1– 

 
τn 1+

ui
′

i 1=
n p–∑ un 1+

2
1 2⁄

1– 
 

uii 1=
m∑ ui

′
i 1=
n p–∑ uii 1=

p 1+∑ ui
′

i 1=
n p–∑ uii 1=

p∑ un 1+

2
1 2⁄

1– 
 

2
1 2⁄

1– 
 

un 1+

2
1 2⁄

1– 
 

2
1 2⁄

1– 
 

un 1+ 2
1 2⁄

1– 
 

2 3 2
3 2⁄

– 
 

+ 2 2
1 3⁄

1– 
 

 
 

ℜFT RM– FF–
∞

www.manaraa.com

134

In order to prove the above bound, we define a weighting function that maps the uti-

lization of tasks into the real interval [0, 1] as follows:

, wherea = .

Lemma 4.3: If a processor is assigned a number of tasks with uti-

lizations , then , where a = .

This lemma is true according to Lemma 3.1

Lemma 4.4: In the completed FT-RM-FF schedule. If a processor is assigned m

≥ 2 tasks and ≥ , then .

Proof: Since ≥ , by the definition of

weighting function. ■

Proof of Theorem 4.2: Let Σ = { } be a set ofm tasks, with their utili-

zations , respectively, andϖ = .

Suppose that among theN processors that are used byFT-RM-FF to schedule a

given setΣ of tasks,L of them have withβi > 0, wherej ranges over

all tasks in processori among theL processors. Let us divide these processors into two dif-

ferent classes:

(1) Processors to each of which only one task is assigned. Letn1 denote the number

of processors in this class.

(2) Processors to each of which two or more tasks are assigned. Letn2 denote the

number of processors in this class. According to Lemma 4.1, there are at most

κ processors whose utilization in the schedule is less than or equal toa =

. Thereforen2 = κ.

Obviously,L = n1 + n2. For each of the restN − L processors, ≥ 1, where

j ranges over all tasks in a processor. There are two cases to consider with regard ton1.

Case 1:n1 > 2κ. For the processors in class (1), > n1() according

to Lemma 4.1. Since < 1 by assumption, we haveui < a. Therefore

> n1 () / a. Moreover, according to Lemma 4.1, there are at mostκ tasks, the utili-

W u()
u a⁄ 0 u a<≤
1 a u 1≤ ≤

{= 2 2
1 3⁄

1– 
 

τ1 τ2 … τn, , ,

u1 u2 … un, , , W ui()
i 1=
n∑ 1 a⁄≤ 2 2

1 3⁄
1– 

 

uii 1=
m∑ 2 2

1 3⁄
1– 

 
W ui()

i 1=
m∑ 1≥

uii 1=
m∑ 2 2

1 3⁄
1– 

 
W ui()

i 1=
m∑ 1≥

τ1 τ2 … τn, , ,

u1 u2 … un, , , W ui()
i 1=
n∑

W uj()
j∑ 1 βi–=

2 2
1 3⁄

1– 
 

W uj()
j∑

uii 1=

n1∑ 2
1 2⁄

1–

W ui() W ui()
i 1=

n1∑
2

1 2⁄
1–

www.manaraa.com

135

zation of each of which is less than or equal to (). In the optimal assignment of

these tasks, the optimal numberN0 of processors used cannot be less thann1 / 2, i.e.,N0 ≥

n1 / 2, since possibly withκ exceptions, any three tasks among these tasks cannot be sched-

uled on one processor. Note that in the optimal schedule, the necessary and sufficient con-

dition must be used, i.e., both computation time and period of a task are taken into account.

Now we are ready to determine the relationship betweenN andN0.

ϖ = ≥ (N − L) + n1 () / a = N − n1 − n2 + n1 () / a

= N − n1 − n2

≥ N − 2N0 − n2, sinceN0 ≥ n1 / 2.

Sinceϖ ≤ N0 / a by Lemma 4.3,

N0 / a ≥ N − 2N0 − n2 ≥ N − 2N0 − κ

Therefore,N ≤ + κ, wherea = .

Case 2:n1 ≤ 2κ. ThenL = n1 + n2 ≤ 3κ, i.e., the number of processors with

< 1 is at most 3κ. Sinceϖ ≤ N0 / a andϖ = ≥ N − L,

N ≤ N0/ a + L ≤ N0/ a + 3κ.

If n1 ≤ 2κ, then the upper bound is given by 1/ a ≈ 1.92. This implies that if the

number of processors on each of which one task is assigned is small, i.e.,n1 ≤ 2κ, then the

upper bound can be improved significantly, from 2.33 to 1.92.

Since the termκ is constant with respect toN in N ≤ N0/a

+ κ, it becomes negligible whenN0 becomes large. Therefore, the worst case performance

of FT-RM-FF is upper bounded by 2.33. According to Theorem 3.7, it is lower bounded by

2.283 whenκ = 1. Hence 2.283≤ ≤ 2.33, the bound of 2.33 is nearly tight.■

4.3. Average Case Performance Evaluation

In order to gain some insight into the average case behavior of the new algorithm,

we use the same approach as we did in Section 3.9 to evaluate its performance.

Our simulation studies consist of two steps: (1) generate task sets with random dis-

2
1 2⁄

1–

W ui()
i 1=
m∑ 2

1 2⁄
1– 2

1 2⁄
1–

1 2
1 2⁄

1– 
 

a⁄–

1 2
1 2⁄

1– 
 

a⁄–

1 2
1 2⁄

1– 
 

a⁄– 1 2
1 2⁄

1– 
 

a⁄–

2a 1 2 2
1 2⁄

1– 
 

–+ N0 a⁄ 2 2
1 3⁄

1– 
 

W ui()

W ui()
i 1=
m∑

2a 1 2 2
1 2⁄

1– 
 

–+

ℜFT RM– FF–
∞

www.manaraa.com

136

tributions; (2) run the task sets through the algorithms to produce results. The output param-

eter for each algorithm is the number of processors used to accommodate a given set of

tasks.

The input data of all parameters for a task set are generated according to uniform

distribution. The periods of tasks are generated in the range of 1≤ Ti ≤ 500. The number of

versions for each task is uniformly distributed in the range of 1≤ κi ≤ 5. The computation

time of each version is in the range of 1≤ Ci,j ≤ αTi, whereα is the maximum allowable

utilization of any version, i.e.,α = .

The result is plotted in Figures 4.6 and 4.7 with two values ofα. Each data point

depicts the average value of 10 independently generated task sets with identical parameters.

In order to make comparisons, we also ran the same data through Algorithm 1, and the

results are plotted in the same figure.

The total utilization (load) of a task set is given by , which

can be considered as the minimum number of processors needed to execute the task set. It

is a lower bound on the number of processors to be computed. FT-RM-FF outperforms

maxi j, Ci j, Ti⁄()

Figure 4.6: Performance of FT-RM-FF and Algorithm 1 (α = 1.0)

Ci j,j 1=

κi∑ 
  Ti⁄

i 1=
n∑

www.manaraa.com

137

Algorithm 1 in all the experiments we have carried out. On the average, Algorithm 1 uses

130% extra processors compared to the lower bound, and FT-RM-FF uses 40% extra pro-

cessors, which is a lot better than the 133% extra processors needed in the worst case.

Since using as the lower bound for a scheduling algorithm

may be too pessimistic, we are interested in finding out the extra percent of processors that

is used by the FT-RM-FF algorithm to schedule any given task set. We will present some

more simulation data about FT-RM-FF along with the algorithm presented in the next chap-

ter.

Ci j,j 1=

κi∑ 
  Ti⁄

i 1=
n∑

Figure 4.7: Performance of FT-RM-FF and Algorithm 1 (α = 0.5)

www.manaraa.com

138

Chapter 5 Supporting Fault-Tolerance in Earliest-
Deadline-First Scheduling

We now turn to the problem of scheduling a set of multiple-version periodic tasks

using the minimum number of processors such that the task deadlines are met by the EDF

algorithm on each individual processor. We state the problem as follows:

FT-EDFMS Problem: A set of n tasksΣ = is given, where

 for i = 1, 2,…, n., are the com-

putation times of the versions of task τi. Ri, Di, andTi are the release time, deadline, and

period of taskτi, respectively. What is the minimum number of processors required to exe-

cute the task set such that the versions of each task are executed on different processors and

all the task deadlines are met by EDF?

Liu and Layland prove that a set of periodic tasksΣ = with the

deadline of each task coinciding with its next arrival can be feasibly scheduled by EDF if

and only if ≤ 1 [46]. Note that the release time of each task,Ri, does not affect

the schedulability of a set of periodic tasks. Therefore,Ri andDi can be safely omitted in

scheduling tasks to processors.

Since 0 < ≤ 1 and ≤ 1, we can treat the assignment of a set of

tasks to a single processor as packing a list of items into a bin with a unit size. The quantity

ui = for a task (version) corresponds to the size of an item. In order to distinguish

τ1 τ2 … τn, , ,{ }

τi Ci1 Ci2 … Ciκi
, , ,() Ri Di Ti, , ,()= Ci1 Ci2 … Ciκi

, , ,

κi

τ1 τ2 … τn, , ,{ }

Ci Ti⁄
i 1=
n∑

Ci Ti⁄ Ci Ti⁄
i 1=
n∑

Ci Ti⁄

“Nothing ventured, nothing gained.”
-- Anonymous

www.manaraa.com

139

task versions belonging to one task from those belonging to another, we assign colors to

them such that versions belonging to one task share the same color. Versions belonging to

different tasks have different colors. Then items that have the same color cannot be

assigned to the same bin and the maximum number of items having the same color isκ. The

number of colors is therefore equal to the number of tasks in a task set. The problem of

scheduling a set of multiple-version periodic tasks to processors can thus be reduced to the

following bin-packing problem:

An item is associated with a color, and its size is no more than 1. There are an infi-

nite number of colors available. At mostκ items have the same color. No items with the

same color are assigned to the same bin. Then given a number of colorful items, what is the

best way to pack the items into bins, such that the minimum number of bins is used?

With the exception ofκ = 1, this bin-packing problem has not been studied. When

κ = 1, the above bin-packing problem is reduced to the classical one-dimensional bin-pack-

ing problem, which has been extensively studied by a number of researchers for years. The

classical one-dimensional bin-packing problem arises in a wide range of applications, such

as computer memory allocation, packing trucks with a given weight limit, and assigning

commercials to stations breaks on television.

The above bin-packing problem also occurs in a number of applications, besides the

scheduling of tasks for fault-tolerance. For example, the problem of allocating a set of par-

allelized tasks to the minimum number of processors such that the makespan of the whole

schedule is bounded can also be reduced to this bin-packing problem.

5.1. The Design and Analysis of FT-EDF-First-Fit

Since this bin-packing problem is an NP-complete problem, we resort to heuristic

approach to solve it. We choose the First-Fit scheme for similar reason as outlined in the

previous chapters. The new algorithm is called FT-EDF-FF.

FT-EDF-FF: Let the bins be indexed asB1, B2, …, with each initially filled to level

www.manaraa.com

140

zero. Given a list of colorful items, where the size of each item is no more than 1 and the

maximum number of items having the same color isκ, the items are assigned to bins in the

order they are given. In assigning an item to a bin, the smallest-indexed bin that does not

contain an item with the same color as the item being assigned and in which the item can

be fit, is selected to contain the item. An item is assigned to a new bin if it cannot be

assigned to any non-empty bin.

The main result is stated in the following theorem. Where there is no confusion, we

refer an item with a size ofb simply as itemb.

Theorem 5.1: For any list L of items b1, b2, …, bn, FT-EDF-FF(L) ≤ 1.7L* +

2.19κ, whereκ is the maximum number of items having the same color, FT-EDF-FF(L) is

the number of bins used by FT-EDF-FF to pack the listL, and L* is the minimum number

of bins used to pack the same list.

Before proving the theorem, we need to establish several lemmas.

Lemma 5.1: Suppose the maximum number of items having the same color isκ.

Among all the bins to each of which n≥ c ≥ 1 items are assigned, there are at mostκ of

them, each of which is no more than c / (c +1) full.

Proof: The lemma is proven by contradiction. Suppose that there areκ + 1 bins

each of which is no more thanc / (c + 1) full. LetB1, B2, …, be suchκ + 1 bins and

bi,j be thejth item that is assigned to binBi, for 1≤ i ≤ κ + 1 and 1≤ j ≤ n. Then

≤ c / (c + 1), for 1≤ i ≤ κ + 1.

Let us look at the sizes of items assigned to the last bin, , among theκ + 1

bins. Since there aren ≥ c items in the bin and ≤ c / (c + 1), there must

exist an item in the bin such that ≤ 1 / (c + 1) and .

If not, then > c / (c + 1).

Since + ≤ 1 / (c + 1) +c / (c + 1) = 1 for 1≤ i ≤ κ, and

cannot be assigned to the binBi, there must exist one and only one itembi,j among the items

, that has the same color as does, for alli = 1, 2, …, κ. In

Bκ 1+

bi j,j 1=
n∑

Bκ 1+

Bκ 1+ bκ 1+ j,j 1=
n∑

bκ 1+ z, Bκ 1+ bκ 1+ z, z 1 2 … n, , ,{ }∈

bκ 1+ j,j 1=
n∑

bi j,j 1=
n∑ bκ 1+ z, bκ 1+ z,

bi j, j 1 2 … n, , ,={ } bκ 1+ z,

www.manaraa.com

141

other words, there are a total ofκ + 1 items having the same color as item . This is

a contradiction to the assumption that the maximum number of items having the same color

is κ. Therefore the lemma must be true. ■

In the following, we define a weighting function W(α) that maps the size of an item,

α, to a number between zero and one, i.e.,W(α): (0, 1]→ (0, 1], as given in Figure 5.1. We

call the value ofW(α) the weight of itemα, and the sum of the weights of the items assigned

to a bin the weight of the bin. The weighting function is defined in such a way that with a

few exceptions, the weight of a bin in the completed FT-EDF-FF packing is equal to or

greater than 1, and the weight of a bin in the optimal packing is no greater than 1.7.

We first claim that for any bin in the optimal packing, the total weight of the bin is

no greater than 1.7, i.e., ≤ 1.7.

Lemma 5.2: Let a bin be filled with itemsb1, b2, …, bm. Then ≤

1.7.

This lemma was proven by Johnson in [30].

In order to prove that, with a limited number of bins, the weight of each bin in the

bκ 1+ z,

W α()

6α() 5⁄ 0 α 1 6⁄≤<
9α() 5⁄ 1 10⁄– 1 6⁄ α 1 3⁄≤<
6α() 5⁄ 1 10⁄+ 1 3⁄ α 1 2⁄≤<
1 1 2⁄ α 1≤<






=

1

7/10

1/2

1/5

1/2 11/31/60

Figure 5.1: Weighting FunctionW(α)

α

W(α)

W bi()
i 1=
m∑

W bi()
i 1=
m∑

www.manaraa.com

142

completed FT-EDF-FF packing is no less than one, we divide the bins into several groups

according to the levels they are filled to. Since a bin can be filled to a level from zero to one,

we instead divide the bins into groups according to the regions their levels fall into. A total

number of seven regions is defined: (0, 1/2], (1/2, 2/3], (2/3, 2/3 + 1/18), [2/3 + 1/18, 3/4),

[3/4, 4/5), [4/5, 5/6), and [5/6, 1]. For each region, the result is stated in a lemma. The proof

of the theorem is given at the end.

Lemma 5.3: Let a bin be filled with items b1 ≥ b2 ≥ … ≥ bm. If ≤ 1/2,

then there are at mostκ bins with <1 and m≥ 1.

Proof: According to Lemma 5.1, among all bins to each of whichm ≥ 1 items are

assigned, there are at mostκ of them, each of which is no more than 1/2 full. Therefore,

there are at mostκ bins with < 1. ■

Lemma 5.4: Let a bin be filled with items b1 ≥ b2 ≥ … ≥ bm. If 1/2 < ≤

2/3, then there are at mostκ bins with <1 and m≥ 2.

Proof: For 1/2 < ≤ 2/3, the bins with < 1 must be assigned

at least two items, i.e.,m ≥ 2. If m = 1, thenb1 > 1/2 and ≥ 1.

According to Lemma 5.1, among all bins to each of whichm≥ 2 items are assigned,

there are at mostκ of them, each of which is no more than 2/3 full. Therefore, there are at

mostκ bins with < 1. ■

For the region of (2/3, 2/3 + 1/18), there may be an infinite number of bins with

 < 1. However, the deficiency of weights created by these bins can be

bounded, as shown by the next lemma. However, in order to show that this deficiency can

indeed be bounded, we need a few definitions.

Definition 5.1: Let a binBi be filled with itemsb1, b2, …, bm. The color of an item

bj is denoted byχ(bj), and the set of colors of the items in a binBi is denoted byχ(Bi). The

deficiencyδi of a binBi is defined asδi = 1− , i.e., where the bin is filled up to the

level of 1 − δi in the completed FT-EDF-FF packing. For convenience in defining the

coarseness of a bin, we introduce an imaginary bin with a zero index, such that its coarse-

bii 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑ W bi()

i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑

www.manaraa.com

143

ness is zero, and its color set is empty. Then the coarseness of a bin with an index larger

than zero is defined as

, for i ≥ 1.

Specifically, the coarseness of a bin is equal to the maximum deficiency, among all

the bins that are ahead of the current bin and that do not share any color with the current

bin. Intuitively, the size of each item in a bin must be larger than the coarseness of the bin.

If a bin has a coarseness of zero, then either it is the first one or, most likely, every bin ahead

of it shares at least one color with it.

Lemma 5.5: Let a bin Bi with coarsenessαi be filled with items b1 ≥ b2 ≥ … ≥ bm

and2/3 < < 3/4. Then there are at mostκ bins with <1 and m≥

3. If l is the number of bins with2/3 < < 2/3 + 1/18, = 1 − βi, βi >

0, and m =2, then >l − 9κ/20.

Proof: According to Lemma 5.1, among all bins to each of whichm ≥ 3 items are

assigned, there are at mostκ bins of them, each of which is no more than 3/4 full. For those

bins withm ≥ 3, there are at mostκ bins with 2/3 < < 3/4. Therefore, there are at

mostκ bins with < 1.

Accordingly, we need only to focus our attention on the bins each of which is

assigned two items, i.e.,m = 2. Furthermore, 1/2 >b1 ≥ 1/3 andb2 < 1/3, since 2/3 <

 < 2/3 + 1/18 and < 1.

Claim 1: There are at most such bins that have a coarseness of zero.

Let us consider the worst case configuration of the FT-EDF-FF bin-packing where

the maximum number of bins with zero coarseness is achieved. Note that for these bins, a

bin with zero coarseness implies that all the bins ahead of it contain one of the two colors

it contains. This is because each of these bins has a deficiency of at least 1− (2/3 + 1/18).

Recall that for the first of these bins, it contains exactly two colors. For the bins that

follows it, every one of them must contain at least one of its colors. Now we want to find

out the maximum number of bins that can possibly satisfy this constraint. Letn be the num-

αi max 0 j i χ Bj() χ Bi()∩()∧<≤ 0=){ } δj=

bii 1=
m∑ W bi()

i 1=
m∑

bii 1=
m∑ W bi()

i 1=
m∑

W Bi()
i 1=
l∑

bii 1=
m∑

W bi()
i 1=
m∑

bii 1=
2∑ W bi()

i 1=
m∑

3κ() 2⁄

www.manaraa.com

144

ber to be derived. Then it is apparent thatn < 2κ, because the maximum number of items

with the same color isκ.

Let and be the two colors in the first bin. Let be the number of bins that

immediately follow the first bin and share the same color and be the number of bins

that immediately follow the first bin and share the color. If = , thenn ≤ ≤ κ. Let

us assume that > . Letj > 0 be the number of bins that immediately follow theth bin

and have one color . Then +j ≤ κ, since the number of bins containing color must

be no more thanκ. Furthermore, − + j ≤ κ. This is because the (−) bins that

immediately follow the first bins must share one color with thej bins that immediately

follow the th bin with the other color being . This is illustrated in Figure 5.2.

Since ≤ κ, − + j ≤ κ, and + j ≤ κ, we conclude thatn ≤ + j ≤ .

Claim 2: ≥ 1 if ≥ 1 − αi.

For any such bin with coarsenessαi > 0, αi must be larger than 1/3− 1/18 (since

 < 2/3 + 1/18).

Let b1 and b2 be the two items assigned to a binBi andb1 ≥ b2. Thenb1 > αi ≥ 1/3

− 1/18 andb2 > αi ≥ 1/3− 1/18, according to the definition of coarseness. Ifαi ≥ 1/3, then

b2 ≥ 1/3 and ≥ 1/2 + 1/2 = 1.

If αi < 1/3, thenb1 ≥ 1/3, andb2 < 1/3. Otherwise,b1 + b2 < 2/3, which contradicts

the assumption that > 2/3. Then = 6b1/5 + 1/10 + 9b2/5 − 1/10 >

6 /5 + 3b2/5 > (6/5) • (1− αi) + 3αi/5 = 1 + 1/5− 3αi/5 > 1, sinceb2 > αi andαi <

1/3.

For future reference, if = 1 − βi and βi > 0, then we must have

c1 c2 i1

c1 i2

c2 i1 i2 i1

i1 i2 i1

c2 i2 c2

i1 i2 i1 i2

i2

i1 c2

aaa

y

x

x y

x

y

j of y

y

Figure 5.2: Worst Case Configuration of Zero Coarseness

x

y

: a bin with two items
having colors x & y

i1 - i2 of xi2 of y

i1 i1 i2 i2 i1 3κ() 2⁄

W bi()
i 1=
2∑ bii 1=

2∑

bii 1=
2∑

W bi()
i 1=
2∑

bii 1=
2∑ W bi()

i 1=
2∑

bii 1=
2∑

W bi()
i 1=
2∑

www.manaraa.com

145

 < 1− αi, 1/3≤ b1 ≤ 1/2, and 1/6 <b2 < 1/3. = 6b1/5 + 1/10 + 9b2/

5 − 1/10 > 6b1/5 + 9(2/3− b1)/5 = 6/5− 3b1/5 ≥ 9/10 sinceb1 ≤ 1/2. In other words,βi ≤ 1/

10.

Claim 3: ≤ 1 − αi − 5βi/9 if = 1 − βi with βi > 0.

To prove this claim, letb1 and b2 be the two items assigned to a binBi with b1 ≥ b2.

Suppose = 1− αi − γ with γ > 0. Then we can construct a bin filled with two items

σ1 andσ2 such thatσ1 + σ2 = b1 + b2 + γ, andσ1 ≤ 1/2 andσ2 ≤ 1/2. ThenW(σ1) + W(σ2)

≥ 1. Since the slope of the weighting function W in the range of (0, 1/2] does not exceed 9/

5, thereforeW(σ1) + W(σ2) ≤ + 9γ/5. In other words, 1≤ 1 − βi + 9γ/5. 5βi/

9 ≤ γ. ≤ 1 − αi − 5βi/9.

Suppose that in the completed FT-EDF-FF packing, letl be the number of bins with

 < 1. Among thel bins, let , , …, be the bins that have non-zero

coarseness. If we group these bins according toχ() ∩ χ() = 0 for any pair of bins in

a group, then there are at most different groups, according to Claim 1. Within each

group, letn be the number of bins in such group. Thenαi < αj if i < j . Sinceαi ≥ +

5 /9, for 1 < i≤ n, then ≤ 9/5 • = 9/5 • (αn − α1) ≤ 9/5 •

(2/3 + 1/18− 2/3) = 1/10. Sinceβn ≤ 1/10, we have ≤ 2/10. Therefore ≤

 • 2/10 = 3κ/10.

For the bins with zero coarseness, suppose that there areg ≤ of

them, each with = 1 − βi whereβi > 0. According to the reasoning above,

 ≤ • 1/10 = 3κ/20.

Therefore, ≤ 3κ/10 + 3κ/20 = 9κ/20, wherel = h + g.

 > l − 9κ/20. ■

Lemma 5.6: Among all the bins filled to the level of 2/3 + 1/18≤ < 3/4,

there are at mostκ of them with < 1 and m≥ 3.

Proof: Let a binBi be filled with itemsb1 ≥ b2 ≥ … ≥ bm and 2/3 + 1/18≤

≤ 3/4.

bii 1=
2∑ W bi()

i 1=
2∑

bii 1=
m∑ W bi()

i 1=
m∑

bii 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑

W bi()
i 1=
m∑ B1

′
B2

′
Bh

′

Bi
′

Bj
′

3κ() 2⁄

αi 1–

βi 1– βii 1=
n 1–∑ αi αi 1––()

i 2=
n∑

βii 1=
n∑ βii 1=

h∑
3κ() 2⁄

3κ() 2⁄ 3κ() 2⁄

W bi()
i 1=
m∑

βii 1=
g∑ 3κ() 2⁄

βii 1=
l∑

W Bi()
i 1=
l∑

bii 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑

www.manaraa.com

146

If m = 1, thenb1 ≥ 2/3 + 1/18 > 1/2. ≥ 1.

If m = 2, there are three cases to consider:

(1) If b1 > 1/2, then ≥ 1.

(2) If 1/3 <b1 ≤ 1/2 and 1/3 <b2 ≤ 1/2, then ≥ 1/2 + 1/2 = 1.

(3) If 1/3 <b1 ≤ 1/2 and 1/6 <b2 ≤ 1/3, then ≥ 6b1/5 + 1/10 + 9(2/3

+ 1/18− b1)/5 − 1/10 = 13/10− 3b1/5 ≥ 1.

Obviously, the bins with < 1 must be assigned at least three items,

i.e., m ≥ 3. According to Lemma 5.1, among all bins to each of whichm ≥ 3 items are

assigned, there are at mostκ bins of them, each of which is no more than 3/4 full. Therefore,

there are at mostκ bins with < 1. ■

Lemma 5.7: Among all the bins filled to the level3/4≤ < 4/5, there are

at mostκ of them with <1 and m≥ 4.

Proof: Let a binBi be filled with itemsb1 ≥ b2 ≥ … ≥ bm and 3/4≤ < 4/5.

If m is equal to 1 and 2, then we can prove, similarly to the proof of Lemma 5.6, that

≥ 1.

If m = 3, there are seven cases to consider:

(1) If b1 > 1/2, then ≥ 1.

(2) If 1/3 <b1 ≤ 1/2 and 1/3 <b2 ≤ 1/2, then ≥ 1/2 + 1/2 = 1.

(3) If 1/3 <b1 ≤ 1/2, 1/6 <b2 ≤ 1/3, and 1/6 <b3 ≤ 1/3, then = 6b1/5

+ 1/10 + 9b2/5 − 1/10 + 9b3/5 − 1/10≥ 6[3/4− (b2 + b3)]/5 + 9 (b2 + b3)/5 − 1/

10 = 3(b2 + b3)/5 + 4/5 > 1, sinceb2 + b3 > 1/3.

(4) If 1/3 <b1 ≤ 1/2, 1/6 <b2 ≤ 1/3, andb3 ≤ 1/6, then = 6b1/5 + 1/

10 + 9b2/5 − 1/10 + 6b3/5 ≥ 9b2/5 + 6(3/4− b2)/5 = 3b2/5 +9/10 > 1.

(5) If 1/3 <b1 ≤ 1/2 andb2 ≤ 1/6, then = 6b1/5 + 1/10 + 6b2/5 + 6b3/

5 = 6()/5 + 1/10≥ (6/5) • (3/4) + 1/10 = 1.

(6) If 1/6 < b1 ≤ 1/3, 1/6 <b2 ≤ 1/3, and 1/6 <b3 ≤ 1/3, then =

9()/5 − 3/10≥ (9/5) • (3/4)− 3/10 > 1.

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑

www.manaraa.com

147

(7) If 1/6 <b1 ≤ 1/3, 1/6 <b2 ≤ 1/3, andb3 ≤ 1/6, then = 9b1/5 − 1/

10 + 9b2/5 − 1/10 + 6b3/5 ≥ 9(3/4− b3)/5 + 6b3/5 − 2/10 > 23/20− 3b3/5 > 1.

Obviously, the bins with < 1 must be assigned at least four items, i.e.,

m≥ 4. According to Lemma 5.1, among all bins to each of whichm≥ 4 items are assigned,

there are at mostκ bins of them, each of which is no more than 4/5 full. Therefore, there

are at mostκ bins with < 1. ■

Lemma 5.8: Among all the bins filled to the level 4/5≤ < 5/6, there are

at mostκ of them with < 1 and m≥ 5.

Proof: Let a binBi be filled with itemsb1 ≥ b2 ≥ … ≥ bm, and 4/5≤ < 5/6.

If m is equal to 1, 2, and 3, then we can prove, similarly to the proof of Lemma 5.7,

that ≥ 1.

If m = 4, there are eight cases to consider:

(1) If b1 > 1/2, then ≥ 1.

(2) If 1/3 <b1 ≤ 1/2 and 1/3 <b2 ≤ 1/2, then ≥ 1/2 + 1/2 = 1.

(3) If 1/3 <b1 ≤ 1/2, 1/6 <b2 ≤ 1/3, and 1/6 <b3 ≤ 1/3, then ≥ 6b1/5

+ 1/10 + 9b2/5 − 1/10 + 9b3/5 − 1/10≥ 6[4/5− (b2 + b3)]/5 + 9 (b2 + b3)/5 − 1/

10 = 3(b2 + b3)/5 + 43/50 > 1, sinceb2 + b3 > 1/3.

(4) If 1/3 <b1 ≤ 1/2, 1/6 <b2 ≤ 1/3, andb3 ≤ 1/6, then ≥ 6b1/5 + 1/

10 + 9b2/5 − 1/10 + 6(b3 + b4)/5 ≥ 9b2/5 + 6(4/5− b2)/5 = 3b2/5 +24/25 > 1.

(5) If 1/3 <b1 ≤ 1/2 andb2 ≤ 1/6, then = 6b1/5 + 1/10 + 6 (b2 + b3 +

b4)/5 = 6()/5 + 1/10≥ (6/5) • (4/5) + 1/10 > 1.

(6) If 1/6 < b1 ≤ 1/3, 1/6 <b2 ≤ 1/3, 1/6 <b3 ≤ 1/3, and 1/6 <b4 ≤ 1/3, then

 = 9()/5− 4/10≥ (9/5) • (4/5)− 4/10 > 1.

(7) If 1/6 <b1 ≤ 1/3, 1/6 <b2 ≤ 1/3 andb3 ≤ 1/6, then = 9b1/5 − 1/10

+ 9b2/5 − 1/10 + 6(b3 + b4)/5 ≥ 9[4/5 − (b3 + b4)]/5 + 6(b3 + b4)/5 − 2/10 > 31/

25 − 3(b3 + b4)/5 > 1.

(8) If 1/6 <b1 ≤ 1/3 andb2 ≤ 1/6, then = 9b1/5 − 1/10 + 6(b2 + b3 +

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑

W bi()
i 1=
m∑ bii 1=

m∑
W bi()

i 1=
m∑

W bi()
i 1=
m∑

www.manaraa.com

148

b4)/5 ≥ 9[4/5 − (b2 + b3 + b4)]/5 + 6(b2 + b3 + b4)/5 − 1/10 > 67/50− 3(b2 +

b3 + b4)/5 > 1, sinceb2 + b3 + b4 ≤ 1/2.

Obviously, the bins with < 1 must be assigned at least five items, i.e.,

m≥ 5. According to Lemma 5.1, among all bins to each of whichm≥ 5 items are assigned,

there are at mostκ of them, each of which is no more than 5/6 full. Therefore, there are at

mostκ bins with < 1. ■

Lemma 5.9: Let a bin Bi be filled with items b1 ≥ b2 ≥ … ≥ bm. If ≥ 5/

6, then ≥ 1.

Proof: Since W(β) / β ≥ 6/5 in the range of 0≤ β ≤ 1/2 and W(β) = 1 whenβ > 1/

2, we have ≥ 5/6 • 6/5 = 1. ■

Proof of Theorem 5.1: Suppose that in the final FT-EDF-FF-packing, there arem

bins B1, B2, …, Bm, each of which receives at least one item, and < 1. Let

 = 1− βj, with βj > 0 for 1≤ j ≤ m.

Since our goal is to prove that 1.7L* ≥ W ≥ FT-EDF-FF(L) − , we need to

bound the quantity .

According to Lemma 5.8, if ∈ [4/5, 5/6), there are at mostκ bins withm

≥ 5 and < 1. Letl be the number of bins with = 1− βj andβj > 0

for 1 ≤ l ≤ κ. ≤ κ(1 − 4/5 • 6/5) = κ/25.

According to Lemma 5.7, if ∈ [3/4, 4/5), there are at mostκ bins withm

≥ 4 and < 1. Let l be the number of bins with = 1− βj andβj > 0

for 1 ≤ l ≤ κ. ≤ κ(1 − 3/4 • 6/5) = κ/10.

According to Lemma 5.5 and Lemma 5.6, if ∈[2/3, 3/4), then there are at

mostκ bins withm≥ 3 and < 1.Let l be the number of bins with

= 1 − βj andβj > 0 for 1≤ l ≤ κ. ≤ κ(1 − 2/3 • 6/5) = κ/5.

If ∈ (2/3, 2/3 + 1/18), then letl be the number of bins withm = 2 and

 < 1. Letl be the number of such bins with = 1 − βj andβj > 0.

According to Lemma 5.5, ≤ 9κ/20.

W bi()
i 1=
m∑

W bi()
i 1=
m∑

bii 1=
m∑

W bi()
i 1=
m∑

W bi()
i 1=
m∑

W Bj()
j∑

W Bj()
j∑

βii 1=
m∑

βii 1=
m∑

bii 1=
m∑

W bi()
i 1=
m∑ W Bj()

j∑
βii 1=

l∑
bii 1=

m∑
W bi()

i 1=
m∑ W Bj()

j∑
βii 1=

l∑
bii 1=

m∑
W bi()

i 1=
m∑ W Bj()

j∑
βii 1=

l∑
bii 1=

m∑
W bi()

i 1=
2∑ W Bj()

j∑
βii 1=

l∑

www.manaraa.com

149

According to Lemma 5.4, if ∈(1/2, 2/3], then there are at mostκ bins with

m ≥ 2 and < 1. Let l be the number of bins with = 1 − βj andβj

> 0 for 1≤ l ≤ κ. ≤ κ(1 − 1/2 • 6/5) = 2κ/5.

According to Lemma 5.3, if ∈(0, 1/2], then there are at mostκ bins with

m ≥ 1 and < 1. Letl be the number of bins with = 1 − βj andβj

> 0 for 1≤ l ≤ κ. Then ≤ κ.

Therefore, ≤ κ(1 + 2/5 + 9/20 + 1/5 + 1/10 + 1/25) = 2.19κ.

In summary, FT-EDF-FF(L) ≤ 1.7L* + 2.19κ. ■

We conjecture that the constant can be further lowered from 2.19 to 1, if a better

weighting function can be found. Whenκ = 1, the problem becomes the well-known clas-

sical bin-packing problem. Since the ratio 1.7 is not affected by the value ofκ, our result

therefore subsumes the previous known result [30]. Also, whenκ = 1, examples that

achieve the bound of 1.7 has been given in [30]. Since the term 2.19κ is a constant, it dis-

appears when the optimal number of binsL* approaches infinity. Therefore, we conclude

that the bound is asymptotically tight.

5.2. The Average Case Performance Evaluation

In order to gain some insight into the average case behavior of the new algorithm,

we use the same approach as we did in Section 3.9 to evaluate its performance.

Our simulation studies consist of two steps: (1) generate task sets with random dis-

tributions; (2) run the task sets through the algorithms to produce results. For reasons soon

to be made clear, we use two methodologies to generate task sets with random characteris-

tics. The output parameter for each algorithm is the number of processors used to accom-

modate a given set of tasks.

In the first study, the input data of all parameters for a task set are generated accord-

ing to uniform distribution, except the number of tasks a task set has. The periods of tasks

are generated in the range of 1≤ Ti ≤ 500. The number of versions for each task is uniformly

bii 1=
m∑

W bi()
i 1=
m∑ W Bj()

j∑
βii 1=

l∑
bii 1=

m∑
W bi()

i 1=
m∑ W Bj()

j∑
βii 1=

l∑
βii 1=

m∑

www.manaraa.com

150

distributed in the range of 1≤ κi ≤ 5. The computation time of each version is in the range

of 1 ≤ Ci,j ≤ αTi, whereα is the maximum allowable utilization of any version, i.e.,α =

.

The result is plotted in Figures 5.3 and 5.4 with two values ofα. Each data point

depicts the average value of 10 independently generated task sets with identical parameters.

In order to make comparisons, we also ran the same data through Algorithm 1, and the

results are plotted in the same figure. Observe that Algorithm 1 can be readily modified to

allocate multiple-version periodic tasks for EDF scheduling by replacing the RM condition

with the EDF condition. We hereafter refer to the latter algorithm asEDF-Algorithm 1 and

the former asRM-Algorithm 1. The performance of both allocation schemes under EDF

condition is consistently better than that under RM condition. This is expected since the

total utilization for each processor is bounded by under RM condition, and 1

under the EDF condition. For FT-RM-FF and FT-EDF-FF, their performance is consistently

better than that of Algorithm 1 under RM and EDF conditions, respectively.

The total utilization (load) of a task set is given by , which

maxi j, Ci j, Ti⁄()

n 2
1 n⁄

1– 
 

Figure 5.3: Performance Comparison of the Four Algorithm (α = 1.0)

Ci j,j 1=

κi∑ 
  Ti⁄

i 1=
n∑

www.manaraa.com

151

can be considered as the minimum number of processors needed to execute the task set. It

is a lower bound on the number of processors to be computed. For RM-Algorithm 1, the

number of processors used to execute a task set is more than twice its total utilization in

some cases. This comparison may be overly pessimistic, since the optimal number of pro-

cessors may differ from the total utilization greatly in some cases, and little in other cases.

Therefore, using the total utilization of the task set as a baseline performance may not cap-

ture the whole picture. The ideal solution would be to find the optimal number of processors

for any given task set. However, this is usually deemed to be likely requiring exponential

time with respect to the number of tasks using existing techniques, since the scheduling

problem is NP-complete.

This observation leads us to the employment of a new methodology. Under this

methodology, a task set is generated randomly with the constraint that in the optimal sched-

uling, it fully utilizes a known number of processors, using either the RM or EDF algo-

rithm. In other words, givenm processors, and the average number of task versions to be

run on each processor, we generate a set of tasks that fully utilizesm processors, and at the

Figure 5.4: Performance Comparison of the Four Algorithm (α = 0.5)

www.manaraa.com

152

same time, satisfies the timing and fault-tolerant constraints of the tasks. This is accom-

plished in the following steps:

(1)M arrays of random numbers are generated. The sizes of the arrays are uniformly

generated, with a mean value corresponding to the average number of versions to be run on

a processor.

(2) Each item in an array is divided by the sum of all items in its array to obtain a

number between 0 and 1, which corresponds to the utilization of a version.

(3) For each task, the numbers of the versionsv it has are generated, confirming to

uniform distribution, with a mean corresponding to the average number of versions per

task. Thenv numbers are randomly selected from them arrays of numbers to be the utili-

zations of the versions. This process is repeated until all the items in them arrays are

picked.

Using this methodology to generate task sets, the performance of the four algo-

rithms is plotted in Figure 5.5. Each data point in this figure (and subsequent figures) is the

Figure 5.5: Performance Comparison of the Four Algorithm (α = 1.0)

www.manaraa.com

153

average value of 10 independently generated task sets with identical parameter. On the x-

axis, the number of processors is the optimal number of processors required to execute

a task set. On the y-axis, the extra percentage of processors is defined as (−) / ,

where is the number of processors required by a heuristic algorithm A to allocate the

same task set. Though the performance of the algorithms is consistent as shown in Figures

5.3 and 5.4, we have a better idea of what percentage of extra processors is needed for each

algorithm for a given task set.

For some heuristics, their performance is highly sensitive to the order of input data,

and hence they are referred to as having unstable performance. We are also interested in the

stability of our heuristics. We consider two options: (1) For each task, its versions are

assigned to processors according to the largest computation time first strategy. (2) The tasks

are assigned to processors in the order of decreasing utilization. For this to work, the task

set must be sorted first. Apparently, there are four ways to arrange the input data:

US: The task set is UnSorted as it is randomly generated.

VD: Versions of each task are sorted in Decreasing order of computation time.

TD: Tasks are sorted in the order of Decreasing utilization (TD).

VD-TD: Versions of each task are sorted in Decreasing order of computation time

(VD), and Tasks are sorted in the order of Decreasing utilization (TD). Note

that the utilization of a task is the sum of the utilizations of all its versions

For the same set of inputs that produced the results shown in Figure 5.5, the perfor-

mance of RM-Algorithm 1 is shown in Figure 5.6. The improvement of performance is

quite significant, when tasks are assigned to processors in the order of decreasing task uti-

lization. What is a little bit surprising is that the order in which the versions of a task is

assigned to processors does not affect the performance very much.

For the same set of inputs that produced the results shown in Figure 5.5, the perfor-

mance of FT-RM-FF and FT-EDF-FF is shown in Figures 5.7 and 5.8. Note that both FT-

RM-FF and FT-EDF-FF are not much sensitive to the order in which tasks are assigned to

N0

NA N0 N0

NA

www.manaraa.com

154

processors and the order in which versions of a task are assigned to processors.

In summary, our simulation studies show that FT-RM-FF and FT-EDF-FF are

insensitive to the order of assigning tasks to processors and to the order of assigning ver-

sions of a task to processors. FT-RM-FF and FT-EDF-FF outperform RM-Algorithm 1 and

EDF-Algorithm 1. The performance of FT-RM-FF is quite good. The 40% extra processors

is almost inevitable because of the schedulability condition . The performance

of FT-EDF-FF is near-optimal, since it usually requires less than 10% extra processors. The

order of assigning tasks to processors affects the performance of Algorithm 1 significantly.

The superiority of FT-RM-FF and FT-EDF-FF is reflected not only in their out-perfor-

mance over Algorithm 1, but most importantly, they can be used as on-line algorithms.

Figure 5.6: Performance of RM-Algorithm 1

n 2
1 n⁄

1– 
 

www.manaraa.com

155

Figure 5.7: Performance of FT-RM-FF with Sorted Input

Figure 5.8: Performance of FT-EDF-FF with Sorted Input

www.manaraa.com

156

Chapter 6 Non-preemptive Scheduling of Periodic
Tasks for Fault-Tolerance

In this chapter, we study the problem of scheduling a set of periodic tasks non-pre-

emptively on a multiprocessor for fault-tolerance. The scheduling problem is formulated in

the similar manner as its preemptive counterpart. However, the problem of non-preemp-

tively scheduling a set of periodic tasks on a multiprocessor is a much difficult one. Jeffay,

Stanat and Martel [28] have shown that a set of periodic tasks may not be schedulable non-

preemptively on a single processor, even if its total CPU utilization is very small, i.e., close

to zero. It is currently not at all clear whether a reasonably efficient heuristic exists for

scheduling a set of periodic tasks non-preemptively on a single processor system. The fact

that multiple processors are involved further complicates the scheduling problem, let alone

the additional requirement of guaranteeing task deadlines even in the presence of processor

failures. In this thesis, we will focus on a special case of the scheduling problem.

In the following, we consider the tolerance of processor failures using a simple soft-

ware redundance scheme. This is a special case of the TFT scheduling problem. The tasks

are independent and non-preemptive. Each task has a primary copy and a backup copy, and

the scheduling goal is to achieve 1-TFT for processor failure, i.e., the tolerance of one arbi-

trary processor failure. This case of the TFT problem is chosen to be studied, because it is

the simplest one.

“Don’t find fault, find a remedy.”
-- Henry Ford, 1863-1947

www.manaraa.com

157

The task redundancy scheme specified in the above case actually corresponds to the

primary-backup copy approach or recovery block approach. Primary-backup copy

approach requires the multiple implementation of a specification [66]. The first implemen-

tation is called the primary copy, and the other implementations are called the backup cop-

ies. The primary and if necessary, the backup copies, execute in series. If the primary copy

fails, one of the backup copies is switched in to perform the computation again. This pro-

cess is repeated until that either correct results are produced or all the backup copies are

exhausted. Here we consider a special case of the primary-backup copy approach where

each task has one backup copy only. The following Lemmas [51] guarantee that having one

backup copy for each task is sufficient for the tolerance of one arbitrary processor failure.

Lemma 6.1: In order to tolerate one or more processor failures and guarantee

that the deadline of a task is met using the primary-backup copy approach, the computation

time of the task must be less than or equal to half of the period of the task, assuming that

the deadline coincides with the period.

Lemma 6.2: One arbitrary processor failure is tolerated and the deadlines of

tasks are met, if and only if the primary copy and the backup copy of each task is scheduled

on two different processors and there is no overlapping in time between their executions.

An obvious implication of Lemma 6.1 is that for each task, if the computation time

of the task is larger than half of its period, it is impossible to find a schedule which is 1-

TFT. This is due to the observation that if the primary copy fails at the very end, there will

not be enough time left to complete a backup copy, assuming that the backup copy has the

same computation time requirement as the primary copy. This fact is used implicitly in

many situations throughout this chapter.

In scheduling the backup copies, we have the options of allowing them to be over-

lapped or forbidding them from overlapping. Here we first consider the case where the

backup copies are not allowed to be overlapped with each other, and then the case where

the backup copies are allowed to be overlapped.

www.manaraa.com

158

6.1. Non-overlapping of Backup Copies

What we mean by disallowing them to be overlapped is that backup copies of the

tasks whose primary copies are scheduled on different processors are not allowed to over-

lap in time of their executions on a processor. For obvious reasons, backup copies of the

tasks whose primary copies are scheduled on the same processor must not be scheduled to

overlap in time of their executions on a processor. When the given number of processors is

two, there apparently exists an optimal algorithm to schedule a set of tasks having a com-

mon deadline so as to tolerate one arbitrary processor failure. However, for more than two

processors, the scheduling problem is NP-complete, even when the tasks have the same

deadline.

6.1.1. Complexity of the Scheduling Problem

We first define the problem and then prove that it is NP-complete.

Task Sequencing Using Primary-Backup with a Common Deadline.

Instance: SetΣ of tasks, number of processors , for each task , one pri-

mary copy and one backup copy , a length (the set of natural num-

bers), a common release time , a common deadlined(t) = , and

 = . No overlapping of backup copies is allowed.

Question: Is there anm-processor schedule forΣ that is 1-TFT, i.e., for each task

, + , and + , where ,i

andj designate the index of processors.

Theorem 6.1: Task Sequencing Using Primary-Backup with a Common Dead-

line is NP-complete.

Proof: It is sufficient to prove that this scheduling problem is NP-complete even in

the case ofm =3. It is easy to verify that this problem is in NP. We next transform the PAR-

TITION problem, an NP-complete problem, to the scheduling problem.

The PARTITION problem [23] is stated as follows: given a finite set A and a “size”

m 3≥ t Σ∈

P t() G t() l t() Z
+∈

r Z
+∈ D Z

+∈

l P t()() l G t()()= l t()

σ

t Σ∈ σi P t()() l P t()() σj G t()()≤ σi G t()() l G t()() D≤ i j≠

www.manaraa.com

159

 for each , is there a subset such that =

?

Given an instance of A = of the PARTITION problem, we con-

struct a task setΣ using the primary-backup copy approach to run on three processors for

the tolerance of a single arbitrary processor failure, such thatΣ can be scheduled if and only

if there is a solution to the PARTITION problem.Σ consists ofn +1 tasks as follows:

, , ,

where , = 2B (this can be assumed without loss of gener-

ality); and one other task :

, , .

It is easy to see that this transformation can be constructed in polynomial time.

What we need to show is that the setA can be partitioned into two sets and such that

 = and + = A, if and only if the task set can be scheduled.

First, suppose that A can be partitioned into two sets and such that

 = = B and + = A. Then we schedule, for each ,

the primary copy of the task with = on processor 2 anywhere between time inter-

val [0, B), and its backup copy on processor 3 anywhere between time interval [B, 2B). For

each task with = , the primary copy of task is scheduled on processor 3

anywhere between time interval [0, B) and its backup copy on processor 1 anywhere

between time interval [B, 2B). Therefore, the 2n copies of then tasks can be scheduled on

processors satisfying the condition set in Lemma 6.2. For task, its primary copy is sched-

uled on processor 1 during time period [0, B), and its backup copy is scheduled on processor

2 between time period [B, 2B), as shown in Figure 6.1. Thus, the task setΣ can be scheduled

on three processors such that the schedule is 1-TFT.

Conversely, if the task setΣ is scheduled on three processors such that the schedule

is 1-TFT, we claim that for all tasks scheduled between the time interval [0, B) on processor

2, the sum of the tasks’ lengths isB, i.e., = B. To be able to tolerate one arbi-

s a() Z
+∈ a A∈ A

′
A⊆ s a()

a A
′∈∑

s a()
a A A

′
–∈∑

a1 a2 … an, , ,{ }

r t() 0= l t() at= d t() 2B=

t τ1 τ2 … τn, , ,{ }∈ ai1 i n≤ ≤∑
β

r β() 0= l β() B= d β() 2B=

S1 S2

s a()
a S1∈∑ s a()

a S2∈∑ S1 S2

S1 S2

s a()
a S1∈∑ s a()

a S2∈∑ S1 S2 a S1∈

α l a() a

a S2∈ l a() a α

β

s a()
a S1∈∑

www.manaraa.com

160

trary processor failure, the primary copy of a task and its backup copy must be scheduled

on two different processors and their execution time must not be overlapped. This later

requirement is guaranteed by the primary-backup copy approach. Since the common dead-

line is 2B and the total task execution time is 2(2B + B) = 6B, any 1-TFT schedule should

have no idle time during the time interval [0, 2B) on all three processors. Therefore, any 1-

TFT schedule must be equivalent to the schedule shown in Figure 6.2, if processors are

properly renamed and the primary copies are moved in front of all the backup copies for

each processor. Shuffling the primary copies in front of all the backup copies will not vio-

late any scheduling constraint, since primary copies can start earlier than scheduled and

backup copies can start later than scheduled, as long as the release time and the deadline

constraints are not violated. For processor 3, exactly one copy, either primary or backup, of

any task among then tasks must be scheduled on it. This is because any 1-TFT schedule

for the three processor requires that no idle time exists on any processor, and the primary

copy of a task and its backup copy must never be scheduled on the same processor. There-

fore, we let all the tasks scheduled on processor 2 between time interval [0, B) be the set

, and the tasks on processor 1 between time interval [B, 2B) be the set . We then have

 = and + = A. We have solved the PARTITION problem.

The scheduling problem is therefore NP-complete. ■

6.1.2. A1-Timely-Fault-Tolerant Scheduling Algorithm

Since the scheduling problem is NP-complete, a heuristic scheduling algorithm is

presented in this section to obtain approximate solution.

B 2B

P S1()
G S1()

P S2() G S1()

P(β)

G(β)

0

processor 1

processor 2

processor 3

Figure 6.1: Mapping from PARTITION to Task Sequencing

S1 S2

s a()
a S1∈∑ s a()

a S2∈∑ S1 S2

www.manaraa.com

161

In scheduling a set of tasks onm processors, the algorithm must be designed to min-

imize the schedule length on each processor such that the task set can be successfully

scheduled, and at the meantime, to prevent the overlapping of the primary copy of a task

and its backup copy. This scheduling problem, at a first glance, seems very much to resem-

ble the scheduling problem of minimizing the makespan of a schedule in a multiprocessor

system. Since the scheduling to minimize the makespan of a schedule is NP-complete, sev-

eral scheduling heuristics have been developed, among which LPT [25] and MULTIFIT

[14] are notable ones. However, there are two key issues that set this scheduling problem

apart from the one to minimize the makespan: the requirement of scheduling primary cop-

ies as well as backup copies, and the requirement that the primary copy of a task cannot

overlap its backup copy, and backup copies of different tasks cannot overlap each other in

execution either. The MULTIFIT algorithm, though out-performing LPT in the worst cases,

is not easily adapted to solve the 1-TFT scheduling problem. The LPT algorithm is there-

fore adopted here to serve as the base algorithm upon which a scheduling heuristic is devel-

oped.

The algorithm starts by first scheduling the primary copies on them processors

using the LPT algorithm. It then schedules the backup copies, by following several rules

described below, such that the primary copy of a task and its backup copy are scheduled on

different processors, and the backup copies of those tasks, whose primary copies are sched-

uled on a processor, are also scheduled on one processor. The algorithm is given in Figure

6.3. Note thatD is the common deadline of the tasks.

processor 3

processor 2

processor 1

2BB0

Figure 6.2: Mapping from Task Sequencing to PARTITION

P(β) P(U2)

P(U2)

P(U1)

G(U1)

G(U2)

G(β)

www.manaraa.com

162

The functioning of the algorithm is illustrated by the following simple example.

Example: Using NOV to schedule the following task set on four processors:Σ =

, = , r = 0, andD = 25. First,

the LPT algorithm is used to schedule the primary copies of the tasks on four processors,

Figure 6.3: Algorithm NOV

D

primary schedules

D

D
D/2

D/2 D/2

primary backup idle

swapped backup schedules

sorted primary schedule shifted backup schedule

m processors

primary schedules appended backup schedules

Figure 6.4: Scheduling Process of NOV

m processors

(a) Schedules after Appending (b) Schedules after Swapping

(c) Schedules after Shifting

τ1 τ2 … τ7, , ,{ } l τi() i 1 … 7, ,={ } 10 8 8 7 6 6 3, , , , , ,{ }

NOV (Input: Task SetΣ, m, 1-TFT; Output:success, schedule)

(1) Sort the tasks in order of non-increasing computation times and
rename them . Compute . If

 or , then report that the task set can-
not be scheduled on m processors by this algorithm such that a
1-TFT schedule can be produced. Otherwise, go to Step 2.

(2) Apply the LPT algorithm to schedule the task set on m processors.
(3) Sort the primary schedules for the m processors in order of non-

increasing schedule lengths. Duplicate the primary schedules to
form m backup schedules and append them at the end of the pri-
mary schedules (Figure 6.4a).

(4) Swap the backup schedules according to the swapping rules
def ined below (Figure 6.4b). Shift the backup schedules to
obtain the mixed schedules according to the shifting rules
defined below (Figure 6.4c).

(5) Find the maximum length among the mixed schedules and compare
it to D. If it is longer than D, the task set cannot be sched-
uled. Otherwise, the mixed schedules generated in Step 4 are
the schedules which are 1-TFT as a whole.

T1 T2 … Tn, , , Ω l Ti()
i 1=
n∑=

Ω mD() 2⁄> l T1() D 2⁄>

www.manaraa.com

163

as shown by Figure 6.5. Second, the four primary schedules are sorted in non-increasing

order. Third, the primary schedules are duplicated to form the backup schedules, which are

then appended to the back of the primary schedules. Lastly, the backup schedules are

swapped and shifted appropriately. The final result is shown in Figure 6.6. Note that if the

number of processors available is three, the task set cannot be scheduled by this algorithm.

The reason to sort the primary schedules before appending is to minimize the max-

imum length of the mixed schedule along with the swapping and shifting processes in the

later stages. The swapping process makes sure that the backup copy of a task is not sched-

uled on the same processor as its primary copy. The purpose of shifting is to minimize the

finishing time of the mixed schedule as well as to avoid the overlapping of backup copies

among different tasks. To elaborate on the swapping and shifting processes, we formally

define the swapping and shifting rules.

Swapping Rules:

(1) If the number of processorsm is even, the longest backup schedule is appended

behind the shortest primary schedule, and the second longest backup schedule

is appended behind the second shortest primary schedule, and so forth.

(2) If m is odd, then the backup schedules of the three central processors are

appended in acyclic fashion. The three central processors are the ones whose

positions are in the middle. The backup schedules of the rest of the processors

are swapped by following swapping rule (1).

8
8

7
6

25

processor 2

processor 4
processor 3

6

3
10processor 1

primary backup idle

Figure 6.5: Schedule Generated by LPT

8 7

25

processor 2

processor 4
processor 3 6

6810
3

8 37
8processor 1 6 10

37 6
primary backup idle

Figure 6.6: Schedule Generated after Swapping and Appending

www.manaraa.com

164

To define the shifting rules, we need the following definitions.

Definition 6.1: Two processors are called twin processors if backup copies of the

tasks in the primary schedule on a processor are appended after the primary schedule of the

other processor. The two schedules on twin processors are called twin schedules. For exam-

ple, in Figure 6.6, processors 1 and 4 are twin processors, so are processors 2 and 3.

Definition 6.2: For the primary schedule of a processor, is defined as its pri-

mary schedule length. is defined as the computation time of the first task in the pri-

mary schedule. Obviously, ≥ . Though denotes the length of a schedule,

it will also be used to denote the corresponding time interval whose length is .

Shifting Rules:

Suppose the backup schedule of processor is appended behind the primary sched-

ule of processor .

(1) If ≤ D/2 and ≤ D/2, then the tasks in are shifted together

ahead of time such that the starting time of the first task in is

. If ≠ , the starting time of the first task in

can be moved to and the rest of the backup copies can be moved ahead

accordingly.

(2) Otherwise, the tasks in are shifted together ahead of time such that the

starting time of the first task in is .

(3) Apply the above rules to every schedule on the processors.

The schedule thus generated by NOV is 1-TFT, as shown by the following theorem.

Theorem 6.2: NOV produces an 1-TFT schedule.

Proof: Since any primary copy of a task and its backup copy are scheduled on two

different processors, as guaranteed by the Swapping Rules, we need only show that there

is no overlapping between the primary copy of a task and its backup copy. Obviously, there

is no overlapping between the primary copy of a task and its backup copy after the swap-

ping process, but before the shifting process. What we need to show is that no overlapping

i lp i()

lq i()

lp i() lq i() lp i()

lp i()

j

i

lp i() lp j() lp j()

lp j()

max lp i() lp j(),{ } lp j() lq j() lp j()

lp i()

lp j()

lp j() lp i()

www.manaraa.com

165

occurs when the shifting is carried out. There are four cases to consider.

Case 1: ≤ D/2 and ≤ D/2. Since the starting time for the first task in

 is , there is no overlapping between the primary copies of the

task scheduled on processorj and their corresponding backup copies on processori. If

≠ , there must be at least two tasks in the primary schedule on processorj. Also,

the inequality > must hold. If not, the second task on processorj should be

scheduled on processori according to the LPT algorithm. Since > , no overlap-

ping can occur between any primary copy and its corresponding backup copy.

Case 2: ≤ D/2 and >D/2. Since > , there must be at least

two tasks in the primary schedule on processorj. Following similar argument used in Case

1 yields that no overlapping can occur between any primary copy and its corresponding

backup copy.

Case 3: >D/2 and ≤ D/2. No overlapping can possibly occur between

any primary copy and its corresponding backup copy in this case.

Case 4: > D/2 and > D/2. Obviously, no overlapping can possibly occur

between any primary copy and its corresponding backup copy in this case. If this case

occurs, no 1-TFT schedule can be generated.

Since Step 5 in the scheduling algorithm ensures that any backup copy finishes

before the deadlineD, the schedule thus generated is 1-TFT. The theorem holds. ■

Observation: The schedule generated by NOV is 1-TFT in the worst case and

-TFT in the best case, wherem is the number of processors. The schedule is 1-TFT

by Theorem 6.2. The schedule is -TFT, because the failure of up to number

processors can be sustained, if none of the processors that fail has its twin among

them. In the schedule generated by NOVas shown in Figure 6.6, if processors 1 and 2 fail,

their twin processors, processors 3 and 4, can execute the backup copies such that none of

the task deadline is missed.

lp i() lp j()

lp j() max lp i() lp j(),{ }

lp j() lq j()

lp i() lq j()

lp i() lq j()

lp i() lp j() lp j() lp i()

lp i() lp j()

lp i() lp j()

m 2⁄

m 2⁄ m 2⁄

m 2⁄

www.manaraa.com

166

6.1.3. Analysis and Performance Evaluation

In order to evaluate the performance of the scheduling algorithm, we develop

another heuristic algorithm that calls the above algorithm to solve its corresponding opti-

mization problem. In other words, we assume that the number of processors is not known

and the scheduling goal is to find the minimum number of processors required to execute a

set of tasks. Then this is the optimization problem corresponding to the schedule problem

described above. We use the typical binary search technique to find the minimum number

of processors required to schedule a given set of tasks such that the schedule generated is

1-TFT. The algorithm is given in Figure 6.7.

Example: Suppose that a task set is given as the one in Section 6.1.2., and the ques-

tion is to find the minimum number of processors necessary to execute the task set, allow-

ing for one processor failure. The number of processors returned by executing NOV-Test is

four, which is in fact equal to the optimal number of processors required.

The time complexity of NOV is , where is the number of

tasks, and is the number of processors. The sorting process takes time. The

LPT in Step 2 takes time. Since the binary search is bounded by ,

NOV-Test takes time.

To evaluate the performance of the NOV algorithm, we generate task sets randomly,

and run NOV-Test. Since the scheduling problem is NP-complete, it is hopeless in practice

to use enumeration techniques to find the optimal solution even when the number of tasks

is small. However, to find out how well the algorithms perform, we consider the lowest

Figure 6.7: Algorithm NOV-Test

O n nlog n mlog+() n

m O n nlog()

O n mlog() O nlog()

O n nlog n mlog+() nlog()

NOV-Test (Input: Task SetΣ, 1-TFT; Output:m andschedule);

(1) LowerB := ; UpperB := n;
(2) m := ; IF (LowerB = m) THEN {m := m + 1;

EXIT};
(3) Invoke NOV (Σ, m, 1-TFT, success, schedule);
(4) IF success THEN UpperB := m ELSE LowerB := m; Goto Step 2.

l Ti()
i 1=
n∑ D⁄

LowerB UpperB+() 2⁄

www.manaraa.com

167

bounds possible for each schedule. Since backup copies are allowed to overlap, the mini-

mum number of processors required to schedule the task set is , whereSum is

the total computation time of the tasks, andD is the deadline or period. The factor of 2

comes from the fact that no overlapping of backup copies is allowed. Therefore, we use

 as the lowest bound possible for each schedule.

Our simulation is carried out in the following fashion: First, a common deadlineD

is chosen. Then a range of values is chosen, from which the computation times of the tasks

are randomly generated. NOV-Test is run for each set of tasks. The ratio between the com-

mon deadlineD and the maximum computation time of the tasks, i.e.,r = D / ,

is kept between 2 and 10. For each different valuer, we run NOV-Test for a wide range of

task sets. Because of space limit, we only show the result of a typical set of experiments,

wherer = 3 and each data point represents the average value of the number of processors

obtained by running 20 independently generated task sets. The result is plotted in Figure

6.8. It is evident from our extensive simulation that the difference between the number of

processors computed by this algorithm and the lowest bound possible is only a few. Thus

it is concluded that the performance of the algorithm is near-optimal.

The performance of NOV may seem surprisingly good at the first glance. However,

it is not surprising at all if we take a closer look at the performance of the heuristic. Graham

[25] proved that the worst case performance of LPT was tightly bounded by 4/3− 1/3m,

wherem is the number of processors. However, that bound is only achievable by a patho-

logical example, where, with the exception of one processor, the number of tasks scheduled

on each processor is only two. Coffman and Sethi [13] later generalized Graham’s bound

to be (k + 1)/k − 1/(km), wherem is the number of processors, andk is the least number of

tasks on any processor, ork is the number of tasks on a processor whose last task terminates

the schedule. This result shows that the worst case performance bound for LPT approaches

unity approximately as 1 + 1/k. The worst case performance of NOV is therefore expected

to be better than 1 + 1/k.

2Sum D⁄

2Sum D⁄

maxi Ci()

www.manaraa.com

168

In our experiments, each processor is approximately assigned five tasks, and thus

the worst case performance bounds for both heuristics are expected to be less than 1 + 1/5

= 1.2, according to the above analysis. Also, it is quite unlikely to randomly generate a task

set, which can coincide with the worst cases for the heuristic.

To analyze the performance of the algorithm, we first analyze the performance of

the following algorithm:

NOV_1 (Input: Task SetΣ, m, 1-TFT; Output:Length, schedule)

(1)-(4) The same as Steps 1-4 of Algorithm NOV.
(5) Return the maximum length among the mixed schedules as the length

of the overall schedule.

The only difference between NOV_1 and NOV is that there is no deadline con-

straint in NOV_1.

If = , whereA represents NOV_1, L(A) the length of schedule

generated by heuristic A, and the length of the optimal schedule, then we can conclude

that = , whereB represents NOV-Test and the length of the corre-

Figure 6.8: Performance of NOV

ℜA maxLo

L A()
L0

-------------- 
 

L0

ℜB maxLo

L B()
L0

-------------- 
  L0

www.manaraa.com

169

sponding optimal schedule. The conclusion is based on the result by Coffman, Garey, and

Johnson [14].

Let L and denote the schedule lengths obtained by NOV_1 and the optimal algo-

rithm, respectively. LetN and denote the schedule lengths obtained by LPT and the opti-

mal algorithm, respectively. = . The relationship among these

parameters is given in Figure 6.9. By definition,L ≥ , N ≥ , ≥ , and ≥ 2 .

Supposek is the minimum number of tasks assigned to a processor in a schedule.

Lemma 6.3: If k ≤ 1 in the schedule produced by NOV_1, the schedule is optimal.

In other words, =1.

This lemma is trivially true since each processor is assigned at most one task.

Theorem 6.3: ≤ , where A represents NOV_1 andm is the

number of processors.

Proof: We prove the theorem by contradiction.

If L = 2L* , then the schedule is optimal and hence = 1. Therefore we need only

consider the case whereL > 2L* .

Suppose that > , i.e., > . Since ≥ 2L* , we

have ≥ > . In other words,

 > . (Eq.6.1)

N
L*

L

N0

L
0

Figure 6.9: Relationship Between Performance Parameters

Optimal Schedule Schedule by NOV_1

L0

N0

L
*

l Ti()
i 1=
n∑ 

  n⁄

L0 N0 N0 L
*

L0 L
*

ℜA

ℜA 7 6⁄ 1 6m()⁄–

ℜA

ℜA 7 6⁄ 1 6m()⁄–
L
L0
----- 7

6
--- 1

6m()
--------------– L0

L

2L
*

--------- L
L0
----- 7

6
--- 1

6m()
--------------–

L

L
*

----- 7
3
--- 1

3m()
--------------–

www.manaraa.com

170

Since (otherwiseL = 2), the schedule generated by LPT is shown in Fig-

ure 6.10, whereWL is the earliest time a processor finishes executing its primary task cop-

ies. There are two cases to consider: =L* and >L* .

Case 1: =L* . Since = 2 from the assumed condition, it follows from ine-

quality (6.1) thatL / > . SinceL ≥ N + WL, we haveN/ > 7/3− 1/

(3m) − WL/L* . SinceWL/L* < 1, we haveN/ > 7/3 − 1/(3m) − WL/L* > 4/3 − 1/(3m),

which contradicts the result thatN/ ≤ 4/3− 1/(3m) by Graham [25].

Case 2: >L* . Since = 2L* , we haveL/ = L/(2L*), i.e,L/L* > 7/3− 1/(3m).

SinceL = N + WL, L/L* = N/L* + WL/L* . SinceWL/L* < 1, we haveN/ ≥ N/L* > 4/3− 1/

(3m), which results in a contradiction again. ■

Theorem 6.4: ≤ , where A represents NOV_1, m is the number of

processors, and k is the minimum number of tasks assigned on each processor in the pri-

mary schedule.

Proof: Let m be the number of processors required to schedule a given task setΣ.

Obviously,L ≤ 2N. Letτl be the task with the largest index whose finishing time in

the primary schedule isL. ThenN ≤ L(τl) + /m = (m− 1)L(τl) / m +

/ m≤ mL(τl) / m + /m. SincemL(τl) ≤ / k, where k is the minimum num-

ber of tasks assigned to each processor in the primary schedule,N ≤ (1 + 1/k) / m.

SinceL0 ≥ 2 /m, we have

N L
*≠ L

*

N0 N0

N0 L0 N0

N0 7 3⁄ 1 3m()⁄– N0

N0

N0

N0 L0 L0

N0

N
L*

Figure 6.10: A Schedule Generated by LPT and NOV_1

WL

L

m processors

ℜA k 1+() k⁄

τii 1 i l≠,=
n∑ τii 1=

n∑
τii 1=

n∑ τii 1=
n∑

τii 1=
n∑

τii 1=
n∑

www.manaraa.com

171

L ≤ 2N ≤ 2 (1 + 1/k) ≤ (1 + 1/k)L0.

Therefore, ≤ (1 + 1/k). ■

6.2. Overlapping of Backup Copies

What we mean by allowing backup copies to be overlapped is that backup copies

of the tasks whose primary copies are scheduled on different processors are allowed to be

overlapped in time of their executions on a processor, since, in the worst case, only one pro-

cessor failure is tolerated by assumption. However, backup copies of the tasks whose pri-

mary copies are scheduled on the same processor should not be scheduled to overlap each

other in time of their executions on a processor. If the given number of processors is two,

there apparently exists an optimal algorithm to schedule a set of tasks having a common

deadline so as to tolerate one arbitrary processor failure. However, for more than two pro-

cessors, the scheduling problem is NP-complete, even if the tasks have the same deadline.

6.2.1. Complexity of the Scheduling Problem

Task Sequencing Using Primary-Backup with a Common Deadline

Instance: Set Σ of tasks, number of processors , for each task , one pri-

mary copy and one backup copy , a length (i.e., computation time),

a common release time , a common deadlined(t) = , and =

. Note that overlapping among backup copies of the tasks on differ-

ent processors is allowed.

Question: Is there anm-processor schedule forΣ that is 1-TFT, i.e., for each task

, + , and + , where ,i

andj designate the index of processors.

Theorem 6.5: The Task Sequencing Problem is NP-complete.

Proof: It is easy to verify that the scheduling problem belongs to NP. We now trans-

form the PARTITION problem [23] to the scheduling problem when the number of proces-

sors is 3, i.e.,m = 3.

τii 1=
n∑

ℜA

m 3≥ t Σ∈

P t() G t() l t() Z
+∈

r Z
+∈ D Z

+∈ l t()

l P t()() l G t()()=

σ

t Σ∈ σi P t()() l P t()() σj G t()()≤ σi G t()() l G t()() D≤ i j≠

www.manaraa.com

172

Given an instance of A = of the PARTITION problem, we con-

struct a task setΣ using the primary-backup copy approach to run on three processors for

the tolerance of one arbitrary processor failure, such thatΣ can be scheduled, if and only if

there is a solution to the PARTITION problem.Σ consists ofn + 4 tasks as follows:

, , ,

for t = , where = 2B (This can be assumed without lose of gener-

ality). Thesen tasks are referred to asα-type tasks.

The other four tasks , , , and are defined as

, , ,

whereβ = . These four tasks are referred to asβ-type tasks.

It is easy to see that this transformation can be constructed in polynomial time.

What we will show in the following is that the set A can be partitioned into two sets and

 such that = and + = A, if and only if the task set can

be scheduled to produce an 1-TFT schedule.

First, suppose that A can be partitioned into two sets and such that

 = and + = A. Then for each task whose length

is = , its primary copy is scheduled on processor 2 anywhere during time interval

[B, 2B), and its backup copy on processor 3 anywhere during time interval [2B, 3B). For

each task whose length is = , its primary copy is scheduled on processor 3

anywhere during time interval [B,2B), and its backup copy on processor 2 anywhere during

time interval [2B, 3B). For the tasks , , , and , they are scheduled in the manner

as shown in Figure 6.11. The schedule thus generated is 1-TFT according to Lemma 6.2.

Therefore, the task setΣ is scheduled on the three processors such that the schedule is 1-

TFT.

Conversely, if the task set Σ can be scheduled on three processors such that the

schedule is 1-TFT, then the schedule has one of the two forms as given in Figures 6.12 and

6.13, if the processors are properly renamed and the tasks properly adjusted. Note that for

a1 a2 … an, , ,{ }

r t() 0= l t() at= d t() 3B=

τ1 τ2 … τn, , , ai1 i n≤ ≤∑

β1 β2 β3 β4

r β() 0= l β() B= d β() 3B=

β1 β2 β3 β4, , ,

S1

S2 s a()
a S1∈∑ s a()

a S2∈∑ S1 S2

S1 S2

s a()
a S1∈∑ s a()

a S2∈∑ S1 S2 α S1∈

l α() a

α S2∈ l α() a

β1 β2 β3 β4

www.manaraa.com

173

each processor schedule, shuffling the primary copies in front of all the backup copies will

not violate any scheduling constraint, since primary copies can start earlier than scheduled

and backup copies can start later than scheduled, as long as the release time and the dead-

line constraints are not violated.

Case 1 (Figure 6.12): The primary copies of the four tasks , , , and are

scheduled on three processors. Let us assume, with lose of generality, that the primary cop-

ies of and are scheduled on processor 1. Then one of their backup copies must start

at time2B and complete at the deadline 3B, either on processor 2 or on processor 3. It is

further assumed that backup copy is scheduled on processor 2. For processor 3, exactly one

copy, either primary or backup, of any task among then α-type tasks must be scheduled on

it. This is because any 1-TFT schedule for the three processor requires that no idle time

exists on any processor, and the primary copy of a task and its backup copy must not be

scheduled on the same processor. Therefore, let all the tasks scheduled on processor 2 dur-

ing time interval [B, 2B) be the set (U2 during [B, 2B] in the Figure 6.12), and the tasks

on processor 1 during time interval [2B, 3B) be the set , we have =

 and + = A. We have solved the PARTITION problem.

Case 2 (Figure 6.13): The primary copies of the four tasks , , , and are

scheduled on two processors. For the backup copies of the tasks, , , and , there

are two cases in which they can be scheduled:

Case 2.1: The four backup copies are scheduled on processor 3 during time interval

[B, 3B). Then during time interval [0, B) for processor 3, only primary copies can be sched-

uled if any 1-TFT schedule exists. Let all the tasks scheduled on processor 3 during time

2B 3B

P(β1)
P(β2)
P(β3)

P(β4)
P(S1)
P(S2)

G(β3) | G(β2)
G(β1) | G(S2)
G(β4) | G(S1)

processor 1

processor 2

processor 3
0 B

Figure 6.11: Mapping from PARTITION to Task Sequencing

β1 β2 β3 β4

β1 β2

S1

S2 s a()
a S1∈∑

s a()
a S2∈∑ S1 S2

β1 β2 β3 β4

β1 β2 β3 β4

www.manaraa.com

174

interval [0, B) be the set , and the rest of then tasks be the set , we again have

 = and + = A.

Case 2.2: Two of the four backup copies are scheduled on processor 1 and processor

2 during time interval [2B, 3B) respectively. This implies that all the primary copies of the

n tasks are scheduled on processor 3 (if any of then tasks is scheduled on processor 1 or 2,

then there is not enough time for any of the backup copy of-type tasks to finish). The

backup copies of then -type tasks must be scheduled on processor 1 and 2 during time

interval [2B,3B). Let all the tasks whose backup copies are scheduled on processor 1 during

time interval [2B, 3B) be the set , and the tasks whose backup copies are scheduled on

processor 2 during time interval [2B, 3B) be the set , we have =

 and + = A. We have solved the PARTITION problem.

The scheduling problem is therefore NP-complete. ■

6.2.2. A1-Timely-Fault-Tolerant Scheduling Algorithm

In the following, we will first develope a heuristic to solve the scheduling problem

as formulated above, i.e., the special case one, and then evaluate its performance. Though

the requirement that all tasks share a common deadline may seem restrictive, the analytic

results obtained below can be quite useful. In fact, our results answer the following ques-

2B 3B

P(β1)
P(β2)
P(β3)

P(β2)
P(U2)
P(U1)

processor 1

processor 2

processor 3

G(S1)P(U2)

G(U2)

0 B

Figure 6.12: Mapping from Task Sequencing to PARTITION

G(S2)

2B 3B

P(β1)
P(β2)

P(β4)
P(β3)

processor 1

processor 2

processor 3
0 B

Figure 6.13: Mapping from Task Sequencing to PARTITION

S1 S2

s a()
a S1∈∑ s a()

a S2∈∑ S1 S2

β

α

S1

S2 s a()
a S1∈∑

s a()
a S2∈∑ S1 S2

www.manaraa.com

175

tion as well: given a set of tasks each with a primary copy and a backup copy (but with no

real-time constraints), and the requirement that the failure of any one processor be toler-

ated, how to schedule the task set, such that the length of the fault-tolerant schedule is min-

imized, i.e., all the tasks complete execution as early as possible even in the presence of one

arbitrary processor failure?

In scheduling a set of tasks onm processors, the algorithm must be designed to min-

imize the schedule length on each processor such that the task set can be successfully

scheduled, and at the meantime, to prevent the overlapping of the primary copy of a task

and its backup copy. Again, for reasons similar to develop NOV, the LPT algorithm is

adopted here to serve as the base algorithm upon which a new algorithm is developed.

The scheduling algorithm starts by sorting the set of tasks in order of non-increasing

computation times, and invokes the LPT algorithm to schedule the set of primary copies on

them processors. After all primary copies have been scheduled, all the tasks scheduled on

any processor are in order of non-increasing computation time, since the LPT algorithm

schedules tasks in the same order. Starting from the first processor schedule, we repeatedly

apply the ALPT (Adapted Largest Processing Time first) algorithm to the backup copies of

the tasks, whose primary copies are scheduled on the same processor, until either the inabil-

ity of the heuristic to schedule the task set is reported, or all them processor schedules are

exhausted. In the later case, the task set can be scheduled by the heuristic to produce an 1-

TFT schedule onm processors. The ALPT algorithm schedules tasks like LPT, except that

the tasks (backup copies) may be scheduled a little bit later than they should be in LPT. This

modification is to avoid the overlapping of the primary copy of a task and its backup copy.

We use pseudo-code to describe the scheduling algorithms in Figure 6.14. Note that

we sometimes refer to them schedules form processors as one schedule as a whole. Let

 and denote the starting time of taskτ and its finishing time on processori,

respectively. The processors are numbered from one tom. The function is defined as

 = y for the scheduleLy, or = y for taskυ, where y is the index of the processor

si τ() fi τ()

ρ

ρ Ly() ρ υ()

www.manaraa.com

176

on which task copyυ is scheduled.Ly denotes the length of schedule or the schedule itself

(understood by context) for the processory. The process of scheduling can be illustrated by

the following simple example.

Example: The following set of tasks is given to be scheduled on three processors

such that one processor failure can be tolerated: Σ = , {l(Ti) | i = 1, 2,…,

7} = , r = 0, andD = 25.First, the LPT algorithm is used to schedule

the primary copies of the tasks on three processors, as shown by Figure 6.15. For a proces-

sori, the backup copies of the tasks whose primary copies are scheduled on processori are

scheduled on all the other processors except processori. The scheduling process is illus-

trated by Figures 6.16a, 6.16b, and 6.16c. Note that if the number of processors available

is 2, then this set cannot be scheduled on 2 processors to produce a 1-TFT schedule. The

correctness of the schedule generated by OV is guaranteed by the following theorem.

OV (Input: Task SetΣ, m, 1-TFT; Output:success, schedule)

(1) Sort the tasks in the order of non-increasing computation time
and rename them . Compute . IF

 or , THEN success := FALSE and report that
the task set is not schedulable on m processors such that a 1-
TFT schedule be produced. Otherwise, go to Step 2.

(2) Apply LPT algorithm to schedule the task set on m processors.
(3) Let denote the lengths of the schedules on m pro-

cessors (initially equal to the lengths of primary schedules).
IF > D THEN success := FALSE; EXIT (the task
set can’t be scheduled); ELSE go to Step 4.

(4)
(line 1) FOR processor TO m DO

Let be the tasks (primary copies) sched-
uled on processor i.

(line 2) FOR task TO DO /* ALPT Algorithm */
(line 3) x := ;
(line 4) z := ;
(line 5) := z + ; := z;
(line 6) IF > D Then success := FALSE; EXIT (The task set

is infeasible);
(line 7)success := TRUE; EXIT.

T1 T2 … Tn, , , Ω l Ti()
i 1=
n∑=

Ω mD≥ l T1() D 2⁄>

L1 L2 … Lm, , ,

max Li 1 i m≤ ≤(){ }

i 1←
υ1 υ2 … υki

, , , ki

j 1← ki
ρ min Lh h i 1 h m≤ ≤∧≠(){ } 

 
max fi υj() Lx,{ }

Lx l υj() sx G υj()()
Lx

Figure 6.14: Algorithm OV

T1 T2 … T7, , ,{ }

10 8 8 7 6 6 3, , , , , ,{ }

www.manaraa.com

177

Theorem 6.6: Algorithm OV generates an 1-TFT schedule.

Proof: According toLemma 6.2, what we need to show is that for each task, its pri-

mary copy and its backup copy are scheduled on two different processors, such that the

starting time for the backup copy is no earlier than the completion time of the primary copy,

and its finishing time is no later than the deadline, and that the backup copies of the tasks

whose primary copies are scheduled on a processor cannot be overlapped in time for their

execution in the same processor.

Formally, following the notations used above, we need to show that

∀i (1 ≤ i ≤ m ∧ ∀j (∧

∀ (< j ∧ ((= x) → (≤))))) holds, wherem is the

number of processors, andki is the number of primary copies scheduled on processor

.

10
8

8 7
6

6
3

processor 1

processor 3
processor 2 primary backup idle

25

Figure 6.15: Schedule created by LPT

8
8 7

6 3
processor 1

processor 3
processor 2 6

10
primary backup idle

25

(a) Schedule created by OV for the backup task copies on processor 1

10

8 7

6processor 1

processor 3
processor 2

6 3

8 primary backup idle

25

(b) Schedule created by OV for the backup task copies on processor 2

10
8 6

6
3

processor 1

processor 3
processor 2 7

8
primary backup idle

25

Figure 6.16: Scheduling Process of OV

(c) Schedule created by OV for the backup task copies on processor 3

1 j ki fi υj() sx G υj()() fx G υj()() D i x≠∧≤∧≤∧≤ ≤

j1 j1 ρ G υj1
()() fx G υj1

()() sx G υj()()

i 1 m,[]∈

www.manaraa.com

178

For each and , sincex =

from line 3, . Since = z = , ≥ .

≤ D from line 6.

SinceLi is initialized to be the length of the primary schedule on processori,

≤ since = z + and = z =

≥ Lx from lines 4 & 5, for < j .

Therefore, the schedule thus generated is 1-TFT. ■

6.2.3. Analysis and Simulation Results

Before we analyze the performance of the heuristic OV, let us define what we mean

by being optimal for a fault-tolerant schedule. A fault-tolerant schedule is optimal if for all

possible processor failure as assumed, its schedule length is the minimum possible. More

specifically, letm denote the number of processors in the system, andWL(i) the length of

the fault-tolerant schedule (schedule for primary and backup copies) on the otherm− 1 pro-

cessors, assuming that processorPi has failed, then the length of the overall fault-tolerant

schedule is defined asWL = . If WL is the minimum possible, then the

schedule is optimal. The algorithm that generates the optimal schedule is called the optimal

algorithm.

In order to analyze the performance of OV, we need to distinguish between two

types of task sets: those that are feasible and those that are not. Given a task setΣ and a

common periodD, the task set is called infeasible if its optimal schedule length exceeds its

given periodD. In other words, for an infeasible task set, no matter which algorithm is used,

it cannot be scheduled to produce a feasible schedule. We are, therefore, only interested in

the task sets that are feasible, i.e., their optimal schedule lengths do not exceed their given

periods. A good measurement of the performance of OV will be the frequency of successes

it offers in scheduling feasible task sets. However, this measurement depends heavily on

the parameter of periodD. If the given periodD is very large with regards to a given task

i 1 m,[]∈ j 1 ki,[]∈ ρ min Lh h i 1 h m≤ ≤∧≠(){ } 
 

i x≠ sx G υj()() max fi υj() Lx,{ } sx G υj()() fi υj()

fx G υj()()

fx G υj1
()() sx G υj()() Lx l υj() sx G υj()() max fi υj() Lx,{ }

j1

max 1 i m≤ ≤{ } WL i()

www.manaraa.com

179

set, then the algorithm will always find a feasible schedule for it. For example, if the given

periodD is twice as long as the optimal schedule length, then according to the results by

Graham [25], any algorithm, as long as it does not leave any processor idle when there are

tasks ready for execution, can generate a feasible schedule.

On the other hand, if the periodD is very close to the optimal schedule length, then

OV may or may not find the feasible schedule, neither may other heuristics. In general, we

have no sure way of knowing whether a set of tasks is feasible or not, unless we run the

algorithm to find it out. In either case, it does not make much sense to analyze the perfor-

mance of OV directly, since it involves the given periodD, which can be arbitrary.

However, if we disregard the given periodD and focus on the ratio between the

length of the schedule generated by a heuristic and the optimal schedule length, we have a

better idea of how well the heuristic performs. For example, if the ratio is 1.2 for a heuristic,

then as long as the given periodD is equal to or more than 1.2 of the optimal schedule

length, it can always find a feasible schedule. A heuristic with a ratio of 1.2 will always per-

form no worse than a heuristic with a ratio of 1.8. Note that the ratio is obtained under

worst-case conditions. This analysis leads us to the study of a heuristic (hereinafter referred

to as heuristicA) slightly different from OV. HeuristicA schedules tasks in exactly the same

manner as OV except that line 6 in Step 4 is omitted, i.e., it treats each task set as having a

periodD of infinity. Note that this heuristic is exactly an solution to the question raised at

the beginning of this section.

Let L(A) andL0 denote the length of the overall fault-tolerant schedule generated

by heuristic A and the optimal schedule length, respectively. Then the ratio =

 measures how close a schedule is to an optimal schedule, with respect to

the completion time of the tasks. This metric is an indicator of how good a scheduling heu-

ristic is. In the following we seek for the heuristicA.

Let us definePSi as the schedule of primary copies on processorPi, for 1 ≤ i ≤ m,

Σi as the set of tasks whose primary copies are assigned on processorPi, andΣi
- = Σ − Σi.

ℜA

maxL0

L A()
L0

-------------- 
 

ℜA

www.manaraa.com

180

We further definePMi as the primary schedule on the otherm− 1 processors where proces-

sorPi has failed. We assert that the primary schedulePMi is equivalent to the schedule gen-

erated by LPT on the task setΣi
- for m − 1 processors. A schedule is equivalent to another

schedule if both schedules have the same set of tasks and the starting time of each task (and

hence its completion time) is the same in both schedules. The possible difference between

two equivalent schedules is that some tasks may be assigned on different processors. The

relationship betweenPSi andPMi is illustrated in Figure 6.17.

Lemma 6.4: The primary schedulePMi is equivalent to the schedule generated

by LPT on the task setΣi
- for m− 1 processors, i.e., LPT(Σ, m)− PSi ≅ LPT(Σ − Σi, m− 1),

for 1 ≤ i ≤ m, where LPT(Σ, m) denotes the primary schedule generated by LPT from task

set Σ on m processors.

Proof: For any taskTj ∈ Σ − Σi with j ∈ [1, 2,…, m − 1], it starts on time zero in

both schedules LPT(Σ, m) and LPT(Σ − Σi, m − 1). For LPT(Σ − Σi, m − 1), the firstm − 1

tasks are assigned to them − 1 processors with a starting time of zero. For LPT(Σ, m), the

first m tasks are assigned to them processors with a starting time of zero. Since one of the

first m tasks is deleted, the restm − 1 tasks are the firstm − 1 tasks inΣ − Σi.

Let |Σi| =ni, then |Σi
- | = |Σ − Σi| =n − ni. For any taskTj in LPT(Σ, m) − PSi with a

starting time ofs(Tj) for m− 1 ≤ j, it must be scheduled on a processor other than processor

Pi ands(Tj) be the earliest idle time among them− 1 processors. This implies that the start-

ing time for taskTj in the schedule LPT(Σ − Σi, m − 1) is the same as it is in LPT(Σ, m).

On the other hand, for any taskTj in LPT(Σ − Σi, m− 1) with a starting time ofs(Tj)

for m − 1 ≤ j ≤ n − ni, it cannot be scheduled on processorPi in the schedule LPT(Σ, m),

otherwise it would have been deleted in throughΣ − Σi. Therefore, the earliest idle time

among them− 1 processors other than processorPi is exactly the same as the starting time

s(Tj) for taskTj in LPT(Σ − Σi, m − 1). Therefore, the two schedules are equivalent.■

What Lemma 6.4 tells us is that every schedulePMi is equivalent to the schedule

generated by LPT on the task setΣ − Σi. SinceOV first schedules the primary copies using

www.manaraa.com

181

LPT and then the backup copies using ALPT, the worst case performance bound is there-

fore expected to be around 1 + 1/k for k > m according to the result by Coffman and Sethi

[13]. This is due to the observation that fork > m, all the backup copies of the tasks are

scheduled immediately after the primary schedule on each processor. In the following, we

show that our heuristic A has an upper bound which is similar to that for LPT. But it turns

out to be non-trivial to show that the upper bounds are tight for heuristic A.

Lemma 6.5: Let k denote the least number of tasks (primary copies) on any pro-

cessor or the number of tasks on a processor whose last task terminates the schedule. Ifk

= 1, then the schedule is optimal.

Proof: The backup copy of a task will be assigned a starting time no earlier than its

primary copy’s finishing time. LetT* be the task with the minimum computation time

requirementτ* , andP* be the processor on whichT* is assigned.

For any taskT other thanT* , its backup copy will be scheduled on processorP* or

any idle processor, with a starting time atτ, which is the computation time requirement of

taskT. For taskT* , its backup copy will be assigned to an idle processor with a starting time

of τ* , if there is any idle processor, or to the processor on which the task with the second

smallest computation time requirement is assigned, with a starting time equal to the finish-

ing time of the task.

Since all the backup copies of the tasks are assigned the earliest starting times as

possible, the schedule is therefore optimal. ■

Let τmax be the largest computation time in a task set and be the length of the

Figure 6.17: Relationship Between Schedules

PS1
PS2

PSm

PSi

PS1
PS2

PSm-1

PMi = LPT(Σ-Σi, m-1)

Σi

LPT(Σ, m)

L i()

www.manaraa.com

182

schedule on processorPi. Then we have the following result.

Theorem 6.7: ≤ , where m is the number of processors. If

kτmax = with k ≥ 2, then ≤ 1 + 1/k − 1/(k(m− 1)).

Proof: Since the backup copy of any taskτ must be assigned a starting time no ear-

lier than its primary copy’s finishing time, L0 ≥ 2τ. LetT* be the smallest backup copy that

finishes last in the fault-tolerant schedule where the processorPi has failed, andτ* be its

computation time requirement. LetPj be the processor on whichT* is assigned. Since the

primary schedule can be taken as generated by LPT according to Lemma 6.4, and the

backup schedule by ALPT, we haveL(j) = τ* + s(T*), wheres(T*) is the starting time of task

T* . Furthermore,s(T*) ≤ .

L(j) = τ* + s(T*) ≤ τ* +

≤ (m − 2)τ* /(m − 1) +

≤ (m − 2)L0/(2(m − 1)) + L0,

sinceL0 ≥ max {2τ* , }.

Since = /L0 = , we have ≤ 3 / 2

− 1 / (2(m − 1)).

If kτmax = with k ≥ 2, thenkτ* ≤ kτmax ≤ ≤

L0, whereτmax is the largest computation time in the task set.

SinceL(i) ≤ (m − 2)τ* /(m − 1) + ≤ (m − 2)L0 / (k(m − 1)) + L0,

we have ≤ 1 + 1/k − 1/(k(m − 1)). ■

The bounds given in Lemma 6.7 are the worst-case bounds. It is interesting to find

out the performance of the scheduling algorithm on the average cases. Ideally, we want to

find out the success ratio of OV with regards to feasible task sets. Since it is hard to verify

whether a task set is feasible or not (the scheduling problem is NP-complete), we again

develop another heuristic algorithm, which calls the above algorithm to solve its corre-

sponding optimization problem. In other words, we assume that the number of processors

ℜA
3
2
--- 1

2 m 1–()
-----------------------–

τiT∑ m 1–()⁄ ℜA

τiT T
*≠∑ m 1–()⁄

τjT T
*≠∑ m 1–()⁄

τjT∑ m 1–()⁄

τiT∑ m 1–()⁄

ℜA max 1 i m≤ ≤{ } L i() max 1 i m≤ ≤{ }
L i()
L0

------------ 
  ℜA

τjT∑ m 1–()⁄ τjT∑ m 1–()⁄

τjT∑ m 1–()⁄

ℜA

www.manaraa.com

183

is not known and the scheduling goal is to find the minimum number of processors required

to execute a set of tasks. Then this is the optimization problem corresponding to the sched-

ule problem described above. We use the typical binary search technique to find the mini-

mum number of processors required to schedule a given set of tasks such that the schedule

generated is 1-TFT, as we have done in Section 6.1.3. The algorithm is given as follows:

OV-Test (Input: Task SetΣ, 1-TFT; Output:m andschedule);

(1) LowerB := ; UpperB := n;
(2) m := ; IF (LowerB = m) THEN {m := m + 1;

EXIT};
(3) Invoke OV (Σ, m, 1-TFT, success, schedule);
(4) IF success THEN UpperB := m ELSE LowerB := m; Goto Step 2.

Example: Suppose that a task set is given as the one in Section 6.2.2., and the ques-

tion is to find the minimum number of processors necessary to execute the task set, allow-

ing for one processor failure. The number of processors returned by executing OV-Test is

three, which is in fact equal to the optimal number of processors required.

To evaluate the performance of OV, we generate task sets randomly, and run OV-

Test. Since the scheduling problem is NP-complete when the number of processors is three,

we use as the minimum number of processors required to schedule the task set,

whereSum is the total computation time of the tasks andD is the deadline or period.

Our simulation is carried out in the following fashion: first, a common deadlineD

is chosen. Then a range of values is chosen, from which the computation times of the tasks

are randomly generated according to the uniform distribution. OV-Test is run for each set

of tasks. The ratio between the common deadlineD and the maximum computation time of

the tasks, i.e.,r = D / , is kept between 2 and 10. For each different valuer, we

run OV-Test for a wide range of task sets. Because of space limit, we only show the result

of a typical set of experiments, wherer = 3 and each data point represents the average value

of the number of processors obtained by running 20 independently generated task sets. The

result is plotted in Figure 6.18. It is evident from our extensive simulation that there is only

l Ti()
i 1=
n∑ D⁄

LowerB UpperB+() 2⁄

Sum D⁄

maxi Ci()

www.manaraa.com

184

one or two processor difference between the number computed by this algorithm and the

lowest bounds possible. Thus it is concluded that the performance of the algorithm is near-

optimal.

In our experiments, each processor is approximately assigned six tasks, and thus the

worst case performance bounds for both heuristics are expected to be less than 1 + 1/6 =

1.1667, according to the above analysis. The performance of OV is therefore consistent

with the analysis. Since the lower bound,Sum/D, is the lowest possible, the algorithm may

in fact find the optimal schedules in many cases. In any case, the algorithms find schedules

that are near optimal.

Figure 6.18: Performance of OV

www.manaraa.com

185

Chapter 7 Conclusion

7.1. Contributions

In this thesis, we study four scheduling problems that are fundamental to support

timeliness and dependability in a computer system. We solve the problems by developing

a number of algorithms that are provably effective. Simulation results also reveal that they

have good average case performance.

(1) The worst case performance bounds of various algorithms for the RMMS prob-

lem are given in Table 7.1. Comparing the bounds in Table 1.1 and in Table 7.1, it is appar-

ent that we have the best on-line and off-line algorithms to date with regard to worst case

performance and average case performance. By the “best” algorithm in the worst case per-

formance we mean that the algorithm has the lowest worst case performance bound among

all the heuristic algorithms for the same problem, whose bounds are known. In the analysis

of algorithms, we not only obtain the upper bounds but also provide examples that show

the upper bounds are tight or nearly tight. We derive the worst case performance of the algo-

rithms with respect to the maximum allowable utilization of a task as well. Simulation

results show that we also have the best algorithms for the RMMS problem with regards to

average case performance.

(2) In solving the RMMS problem, we discover a number of schedulability condi-

tions for the RM scheduling. These conditions are sufficient conditions, but they can deliver

“That which is achieved the most, still has the whole
of its future yet to be achieved.”

-- Lao Zi, Dao De Jing

www.manaraa.com

186

better performance than Liu and Layland’s condition. These conditions offer us a much

broader view on the RM scheduling.

(3) For the FT-RMMS problem, we solve it by proposing an algorithm called FT-

RM-FF. FT-RM-FF is shown to have a nearly tight bound of 2.33. This is the first theoret-

ical result ever obtained for the fault-tolerance of periodic task systems.

(4) For the FT-EDFMS problem, we solve it by proposing an algorithm called FT-

EDF-FF, whose performance is shown to be tightly bounded by 1.7.

(5) For the fourth problem, we prove that the problem of scheduling a set of periodic

tasks on as few as three processors and with a common task deadline such that one arbitrary

processor failure can be tolerated is intractable. Two algorithms are proposed to solve the

problem with respect to the overlapping of backup tasks. Analytical bounds are also

derived for the two algorithms. Simulation shows that they have near-optimal performance

on the average.

(6) Though some of the above problems are studied in the context of real-time and

fault-tolerant computer systems, they are in fact equivalent to some unsolved problems in

other contexts. By solving these problems, we are actually solving other problems as well.

Table 7.1: Performance Bounds of New Algorithms for RMMS

Algorithm A Complexity Type

RM-FF [2.283, 2.33] On-line

RM-BF [2.283, 2.33] On-line

RRM-FF ≤ 1.96 On-line

RRM-BF ≤ 1.96 On-line

RMGT-M ≤ 2 On-line

RMST 2.0; ≤ 1/(1− α) Off-line

RMGT 1.75 Off-line

RM-FFDU 1.667 Off-line

RM-FF-IFF [1.72, 1.96] unbounded On-line

RM-FFDU-IFF [1.44, 1.667] unbounded Off-line

ℜA
∞

O n nlog()

O n nlog()

O n nlog()

O n nlog()

O n()

O n nlog()

O n nlog()

O n nlog()

www.manaraa.com

187

For example, the FT-EDFMS problem is equivalent to a constrained bin-packing problem,

where some items should not be assigned to the same bin.

Although it is not difficult to adapt any of the existing bin-packing heuristics to

solve the RMMS, it is difficult to analyze their worst case performance; to obtain the tight

bounds for these heuristics is even more so. We are aware that the number of steps of our

proof may seem daunting. But because of the importance of the final result, clarity and rigor

are of prime concern. Worst case analysis is necessary for real-time applications, since the

missing of hard deadlines can result in a catastrophic consequence. Once proven, the algo-

rithm and its performance results can be used by practitioners without worrying about its

worst case behavior.

The results presented in this thesis are fundamental, since allocating a set of tasks

on the least number of processors is a natural extension to the problem of scheduling a set

of tasks on a single processor. The two analytic results for FT-RM-First-Fit and FT-EDF-

First-Fit are the generalization of the previous well-known results.

The Rate-Monotonic scheduling was first discovered around 1972-1973, and made

known to the world through Liu and Layland’s 1973 paper. It took about 15 years until 1988

when RM scheduling was used as a scheduling algorithm for a real-time operating system.

Now the RM algorithm has been used in a number of applications [7]. The first result on

RM scheduling heuristic for multiprocessor was derived in 1978 and was presented in

Dhall and Liu’s 1978 paper. Interests in task scheduling on multiprocessors have rapidly

increased only recently, because of the inevitable employment of multiprocessors in many

real-time systems. We believe that the results presented in this thesis are timely results for

the research community and for practitioners at large.

In summary, we believe that by solving these problems, we have contributed to the

establishment of a firm theoretical foundation for guaranteeing task deadlines in a real-time

and fault-tolerant environment.

www.manaraa.com

188

7.2. Future Work

(1) There are several interesting problems remaining for the RMMS problem. What

are the tight bounds for the RM-FF-IFF and RM-FFDU-IFF algorithms? What is the low

bound for any on-line algorithm for the RMMS problem? For bin-packing, it is proven that

the low bound for any optimal on-line algorithm cannot be smaller than 1.533... [44]. Does

the other variation of the Best-Fit heuristic other than the one we investigated in this thesis

have a better performance in the worst case?

(2) Another potentially fruitful area for research is the scheduling of periodic tasks

with resource sharing on a multiprocessor system such that task deadlines are guaranteed

by the RM algorithm. We very much intend to study problems in this area.

(3) Our future work for the FT-RMMS problem will focus on designing algorithms

with lower worst case performance bounds. We believe that algorithms with better perfor-

mance can be found, although it may not be easy to obtain the tight bounds for these algo-

rithms.

(4) Many problems remain open for non-preemptive scheduling of tasks. The toler-

ance of more than one arbitrary processor failures requires that the number of primary cop-

ies or backup copies be more than one for each task. Also, the requirement that all tasks

share a common deadline seems restrictive. It will be of great interest to solve the schedul-

ing problem under the condition that tasks have different deadlines. However, we believe

that finding reasonably efficient heuristics to solve the scheduling problem with only real-

time constraints is prerequisite to solving the scheduling problem with real-time and fault-

tolerant constraints. Another question remains where for some task systems, the mapping

of tasks to processors is not arbitrary because of access to peripheral devices.

www.manaraa.com

189

Appendix A

In this appendix, we show that some errors exist in the proof for the upper bound of

RMFF by Dhall and Liu in [20]. Their RMFF is almost the same as our RM-FF except that

in their RMFF, the IP condition is used with the tasks being sorted in the order of increasing

period. They obtained the following results:

Lemma I: If tasks can not be feasibly scheduled on processors according

to RMFF, then the utilization factor of the set of tasks is greater than .

Lemma II: If tasks are assigned to the processors according toRMFF, among all

processors to each of which two tasks are assigned, there is at most one processor for which

the utilization factor of the set of the two tasks is less than 1/2.

Theorem I: Let N be the number of processors required to feasibly schedule a set

of tasks by RMFF, and N0 the minimum number of processors required to feasibly schedule

the same set of tasks. Then as N0 approaches infinity, 2≤ N / N0 ≤ 4 × 21/3 / (1 + 21/3) (≅

2.23).

Unfortunately, Lemma I is incorrect, as shown by the following counter example.

Lemma II gives a weak result forRMFF. These two errors led the authors to arrive at the

wrong upper bound. In the following, we first show the incorrectness of Lemma I, and then

give a strong version of Lemma II.

Example: Consider the case wherem = 2 and the two tasks are given as follows:

τ1 = (21/2 − 1, 1)

τ2 = (2− 21/2 + ε, 21/2), whereε is a small number and ε > 0.

According to RMFF,τ1 is first assigned to a processor. Sinceu1 = 21/2 − 1 and 2 (1

+ u1)
-1 − 1 = 21/2 − 1 < 21/2 − 1 + ε / 21/2 = u2, τ2 can not be scheduled together with task

τ1 on one processor, according toCondition IP. Sinceτ1 andτ2 can not be scheduled on one

processor,u1 + u2 must be greater than 2/(1 + 21/3) ≅ 0.88 according to Lemma I. Butu1 +

u2 = 2(21/2 − 1) +ε / 21/2 = 0.8284 +ε / 21/2, which is less than 0.88 for smallε.

A stronger (tight) version of their Lemma II can be given in the following lemma.

m m 1–

m 1 2
1 3⁄

+ 
 

⁄

www.manaraa.com

190

The proof is similar to that of Lemma 3.2.

Lemma II (Revised): If tasks are assigned to the processors according toRMFF,

among all processors to each of which two tasks are assigned, there is at most one processor

for which the utilization factor of the set of the two tasks is less than 2(21/3 − 1).

Note that Lemma 1 is true if their RMFF used instead the necessary and sufficient

condition given by Lehoczky et al in their 1989 paper [40] form > 2, and our new result as

stated in Theorem 3.3. It may be the case that Dhall and Liu indeed considered the problem

of scheduling a set ofn tasks onn processors (with one task on each processor), and

obtained the result in Lemma I. However, for their upper bound to hold, the necessary and

sufficient condition must be used in their RMFF scheme instead. In either case, the upper

bound of 2.23 does not fit.

www.manaraa.com

191

Bibliography

[1] N.C. Audsley,Deadline Monotonic Scheduling, Ph.D. Thesis, Dept. Computer

Science, University of York, 1990.

[2] A. Avizienis, The N-version Approach to Fault-Tolerant Software,IEEE Transac-

tions on Software Engineering 11, 1985, 1491-1501.

[3] B.S. Baker, A New Proof for the First Fit Decreasing Bin Packing Algorithm,J.

Algorithms 6, 1985, 49-70.

[4] S. Balaji et al, Workload Redistribution for Fault-Tolerance in a Hard Real-Time

Distributed Computing System,FTCS-19, Chicago, Illinois, June 1989, 366-373.

[5] J.A. Bannister and K. S. Trivedi, Task Allocation in Fault-Tolerant Distributed

Systems,Acta Informatica 20, Springer-Verlag, 1983, 261-281.

[6] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son, Assigning Real-Time Tasks to

Homogeneous Multiprocessor Systems, submitted toIEEE Transactions on Com-

puters, January 1994.

[7] A. Burchard, Y. Oh, J. Liebeherr, and S. H. Son, A Linear Time On-line Task

Assignment Scheme for Multiprocessor Systems,IEEE 11th Workshop on Real-

Time Operating Systems and Software, Seattle, Washington, May 1994.

[8] R.W. Butler, An Assessment of the Real-Time Application Capabilities of the

SIFT Computer System,NASA Technical Memorandum 84432, April 1982.

[9] S. Cheng, J.A. Stankovic, and K. Ramamritham, Scheduling Algorithms for Hard

Real-Time Systems: A Brief Survey, Tutorial: Hard Real-Time Systems, EFF

Press, 1988, 150-173.

[10] H. Chetto and M. Chetto, Some Results of the Earliest Deadline Scheduling Algo-

rithm, IEEE Transactions on Software Engineering 15(10), 1989, 466-473.

[11] R.W. Conway, W.L. Maxwell, and L.W. Miller,Theory of Scheduling, Addison-

Wesley, Reading, MA, 1967.

[12] E.G. Coffman, Jr. (ed.),Computer and Job Shop Scheduling Theory, New York:

www.manaraa.com

192

Wiley, 1975.

[13] E.G. Coffman, Jr. and R. Sethi, A Generalized Bound on LPT Sequencing,Revue

Francaise d’Automatique Informatique Recherche Operationelle 10 (5), 1976,

Suppl., 17-25.

[14] E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson, An Application of Bin-Packing

to Multiprocessor Scheduling,SIAM J. Computing 7, 1978, 1-17.

[15] E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson, Approximate Algorithms for

Bin Packing - An Updated Survey, InAlgorithm Design for Computer System

Design, 49-106, G. Ausiello, M. Lucertinit, and P. Serafini (eds), Springer-Verlag,

New York, 1985.

[16] S. Davari and S.K. Dhall, An On Line Algorithm for Real-Time Tasks Allocation,

IEEE Real-Time Systems Symposium, 1986, 194-200.

[17] S. Davari and S.K. Dhall, On a Periodic Real-Time Task Allocation Problem,

Proc. of 19th Annual International Conference on System Sciences, 1986, 133-

141.

[18] R.I. Davis, K.W. Tindell, and A. Burns, Scheduling Slack Time in Fixed Priority

Preemptive Systems,IEEE Real-Time Systems Symposium, 1993222-231.

[19] S.K. Dhall,Scheduling Periodic-Time-Critical Jobs on Single Processor and Mul-

tiprocessor Computing Systems, Ph.D. Thesis, University of Illinois, Urbana,

1977.

[20] S.K. Dhall and C.L. Liu, On a Real-Time Scheduling Problem,Operations

Research 26, 1978, 127-140.

[21] B.L. Di Vito and R.W. Butler, Provable Transient Recovery for Frame-Based,

Fault-Tolerant Computing Systems,IEEE Real-Time Systems Symposium, 1992,

275-279.

[22] J.D. Gafford, Rate-Monotonic Scheduling,IEEE Micro, June 1991, 34-39.

[23] M.R. Garey and D.S. Johnson,Computers and Intractability: A Guide to the The-

www.manaraa.com

193

ory of NP-completeness, W.H. Freeman and Company, NY, 1978.

[24] M.J. Gonzalez and J.W. Soh, Periodic Job Scheduling in a Distributed Processor

System,IEEE Transactions on Aerospace and Electronic Systems 12(5), Septem-

ber 1976, 530-535.

[25] R. L. Graham, Bounds on Multiprocessing Timing Anomalies,SIAM J. Appl.

Math. 17, 1969, 416-429.

[26] R.L. Graham et al. Optimization and Approximation in Deterministic Sequencing

and Scheduling: A Survey,Annals of Discrete Mathematics 5, 1979, 287-326.

[27] A.L. Hopkins et al, FTMP-A Highly Reliable Fault-Tolerant Multiprocessor for

Aircraft, Proc. of the IEEE 66 (10), October, 1978.

[28] K. Jeffay, D.F. Stanat, and C.U. Martel, On non-preemptive scheduling of periodic

and sporadic tasks,”IEEE Real-Time Systems Symposium, 1991, 129-139.

[29] B.W. Johnson,Design and Analysis of Fault Tolerant Digital Systems, Addison-

Wesley, 1989.

[30] D.S. Johnson,Near-Optimal Bin Packing Algorithms, Ph.D. Thesis, MIT, 1973.

[31] D.S. Johnson, A. Bemers, J.D. Ullman, M.R. Garey, and R.L. Graham, Worst-

Case Performance Bounds for Simple One-dimensional Packing Algorithms,

SIAM J. Comput. 3, 1974, 299-326.

[32] D.S. Johnson, Fast Algorithms for Bin Packing,J. Comput. Syst. Sci. 8, 1974, 272-

314.

[33] D.S. Johnson, and M.R. Garey, A 71/60 Theorem for Bin Packing,J. Complexity

1, 1985, 65-106.

[34] R.M. Kieckhafer, C.J. Walter, A.M. Finn, and P.M. Thambidurai, The MAFT

Architecture for Distributed Fault Tolerance,IEEE Transactions on Computers 37

(4), April 1988, 398-405.

[35] J.C. Knight and P.E. Ammann, Design Fault Tolerance,Reliability Engineering

and System Safety 32, 1991, 25-49.

www.manaraa.com

194

[36] C.M. Krishna and K.C Shin, On Scheduling Tasks with a Quick Recovery from

Failure,IEEE Transactions on Computers 35(5), May 1986, 448-454.

[37] J. Labetoulle, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.Preemptive

Scheduling of Uniform Machines Subject to Release Dates, Report BW 99, Mathe-

matisch Centrum, Amsterdam, 1979.

[38] C.C. Lee and D.T. Lee, A Simple On-line Bin-Packing Algorithm,JACM 32 (3),

July 1985, 562-572.

[39] J.P. Lehoczky, L. Sha, and J.K. Strosnider, Enhanced Aperiodic Responsiveness in

Hard Real-time Environments,IEEE Real-Time Systems Symposium, 1987, 261-

270.

[40] J.P. Lehoczky, L. Sha, and Y. Ding, The Rate Monotonic Scheduling Algorithm:

Exact Characterization and Average Case Behavior,IEEE Real-Time Systems

Symposium, 1989, 166-171.

[41] J.P. Lehoczky, Fixed Priority Scheduling of Periodic Task Sets with Arbitrary

Deadlines,IEEE Real-Time Systems Symposium, 1990, 201-209.

[42] J.P. Lehoczky and S. Ramos-Thuel, An Optimal Algorithm for Scheduling Soft-

Aperiodic Tasks in Fixed-Priority Preemptive Systems,IEEE Real-Time Systems

Symposium, 1992, 110-123.

[43] J.Y.T. Leung and J. Whitehead, On the Complexity of Fixed-Priority Scheduling

of Periodic, Real-Time Tasks,Performance Evaluation 2, 1982, 237-250.

[44] M.F. Liang, A Lower Bound for On-line Bin Packing,Information Processing Let-

ters 10 (2), March 1982, 76-79

[45] A.L. Liestman and R.H. Campbell, A Fault Tolerant Scheduling Problem,IEEE

Transactions on Software Engineering 12(11), November 1986, 1089-1095.

[46] C.L. Liu and J. Layland, Scheduling Algorithms for Multiprogramming in a Hard

Real-Time Environment,JACM 10(1), 1973, 174-189.

[47] J.W.S. Liu, K.-J. Lin, andS. Natarajan, Scheduling Real-time, Periodic Jobs Using

www.manaraa.com

195

Imprecise Results,IEEE Real-Time Systems Symposium, 1987, 252-260.

[48] J.W.S. Liu, K.-J. Lin, W.K. Shih, A.C. Yu, J.Y. Chung and W. Zhao, Algorithms

for Scheduling Imprecise Computations,Computer, May 1989, 58-68.

[49] A.K. Mok, Fundamental Design Problems of Distributed Systems for the Hard

Real-Time Environment, Ph.D. Thesis, M.I.T., 1993.

[50] Y. Oh and S.H. Son, Multiprocessor Support for Real-Time Fault-Tolerant Sched-

uling, IEEE Workshop on Architectural Aspects of Real-Time Systems, San Anto-

nio, Texas, December 1991, 76-80.

[51] Y. Oh and S.H. Son, An Algorithm for Real-Time Fault-Tolerant Scheduling in

Multiprocessor Systems,4th Euromicro Workshop on Real-Time Systems, Athens,

Greece, June 1992.

[52] Y. Oh and S.H. Son, Preemptive Scheduling of Periodic Tasks on Multiprocessor:

Dynamic Algorithms and Their Performance,TR-CS-93-26, Department of Com-

puter Science, University of Virginia, May 1993.

[53] Y. Oh and S.H. Son, Allocating Fixed-Priority Periodic Tasks on Multiprocessor

Systems, re-submitted toReal-Time Systems Journal, February 1994.

[54] Y. Oh and S. H. Son, Rate-Monotonic Scheduling on Multiprocessor Systems,

submitted toInformatica, February 1994.

[55] Y. Oh and S.H. Son, Scheduling Hard Real-Time Tasks with Tolerance of Multi-

ple Processor Failures,Euromicro Journal, Special Issue on Parallel Processing

in Embedded Real-Time Systems, 1994, to appear.

[56] Y. Oh and S. H. Son, Enhancing Fault-Tolerance in Rate-Monotonic Scheduling,

Real-Time Systems Journal, Special Issue on Responsive Computer Systems, May

1994, to appear.

[57] Y. Oh and S.H. Son, Task Allocation Algorithms for Fault-tolerance in Hard Real-

time Systems, submitted toIEEE Trans. on Parallel and Distributed Systems, Feb-

ruary 1994.

www.manaraa.com

196

[58] Y. Oh and S.H. Son, Scheduling Hard Real-Time Tasks with Reliability Constraint,

revised and re-submitted toJournal of Operational Research Society,May 1994.

[59] D.K. Pradhan,Fault-Tolerant Computing -- Theory and Techniques, Volumes I

and II, Prentice-Hall, Englewood Cliffs, N.J., 1986.

[60] R. Rajkumar,Task Synchronization in Real-Time Systems, Ph.D. Thesis, Carnegie-

Melon University, August 1989.

[61] K. Ramamritham, Allocation and Scheduling of Complex Periodic Tasks,Interna-

tional Conference on Distributed Computing Systems, May 1990.

[62] K. Ramamritham and J.A. Stankovic, Scheduling Strategies Adopted in Spring: A

Overview, a chapter inFoundations of Real-Time Computing: Scheduling and

Resource Allocation (ed.) by A.M. van Tilborg and G.M. Koob, 1991, 277-307.

[63] S. Ramos-Thuel and J.K. Strosnider, The Transient Server Approach to Schedul-

ing Time-Critical Recovery Operations,IEEE Real-Time Systems Symposium,

1991, 286-295.

[64] S. Ramos-Thuel,Enhancing Fault Tolerance of Real-Time Systems through Time

Redundancy, Ph.D. Thesis, Carnegie Mellon University, May 1993.

[65] S. Ramos-Thuel and J.P. Lehoczky, On-line Scheduling of Hard Deadline Aperi-

odic Tasks in Fixed-Priority Systems,IEEE Real-Time Systems Symposium, 1993,

160-171.

[66] B. Randell, System Structure for Software Fault Tolerance,IEEE Transactions on

Software Engineering 1, 1975, 220-232.

[67] K. Schwan and H. Zhou, Dynamic Scheduling of Hard Real-time Tasks and Real-

time Threads,IEEE Transactions on Software Engineering 18(8), 1992, 736-748.

[68] P. Serlin, Scheduling of Time Critical Processes,Proc. of the Spring Joint Com-

puters Conference 40, 1972, 925-932.

[69] L. Sha, J.P. Lehoczky, and R. Rajkumar, Solutions for Some Practical Problems in

Prioritized Preemptive Scheduling,IEEE Real-Time Systems Symposium, 1986,

www.manaraa.com

197

181-191.

[70] L. Sha, R. Rajkumar, J.P. Lehoczky, andK. Ramamritham, Mode Change Proto-

cols for Priority-Driven Preemptive Scheduling,Journal of Real-Time Systems

1(3), 1989, 244-264.

[71] L. Sha, R. Rajkumar, andJ.P. Lehoczky, Priority Inheritance Protocols: An

Approach to Real-Time Synchronization,IEEE Transactions on Computers 39(9),

1990, 1175-1185.

[72] L. Sha and J.B. Goodenough, Real-Time Scheduling Theory and Ada,Computer,

April 1990, 53-65.

[73] W-K. Shih, J.W.S. Liu, and J-Y Chung, Fast Algorithms for Scheduling Imprecise

Computations,IEEE Real-Time Systems Symposium, 1989, 12-19.

[74] K.G. Shin, G. Koob, and F. Jahanian, Fault-Tolerance in Real-Time Systems,

IEEE Real-Time Systems Newsletter 7 (3), 1991, 28-34.

[75] T.B. Smith, Fault-Tolerant Processor Concepts and Operation,Proc. of 14th IEE

Fault-Tolerant Computing Symposium, June 1984.

[76] A. Spector and D. Gifford, The Space Shuttle Primary Computer System,CACM,

September 1984, 874-900.

[77] B. Sprunt, J.P. Lehoczky, and L. Sha, Exploiting Unused Periodic Time for Aperi-

odic Service Using the Extended Priority Exchange Algorithm,IEEE Real-Time

Systems Symposium, 1988, 251-258.

[78] B. Sprunt, L. Sha, and J.P. Lehoczky, Aperiodic Task Scheduling for Hard Real-

time Systems,Journal of Real-Time Systems 1, 1989, 27-60.

[79] B. Sprunt,Aperiodic Task Scheduling for Real-Time Systems, Ph.D. Thesis, Carn-

egie Melon University, 1990.

[80] J.A. Stankovic, Misconception of Real-Time Computing,IEEE Computer 21 (10),

1988, 10-19.

[81] K.W. Tindell, A. Burns, andA.J. Wellings, Mode Change in Priority Pre-emp-

www.manaraa.com

198

tively Scheduled Systems,IEEE Real-Time Systems Symposium, 1992, 100-109.

[82] J.H. Wensley et.al, SIFT: Design and Analysis of a Fault-Tolerant Computer for

Aircraft Control,Proc. of the IEEE 66 (10), October 1978, 1240-1255.

[83] A. C. Yao, New Algorithms for Bin Packing,JACM 27, 1980, 207-227.

