The Design and Analysis of Scheduling Algorithms for
Real-Time and Fault-Tolerant Computer Systems

A Dissertation
Presented to

the Faculty of the School of Engineering and Applied Science

i@

University of Virginia

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by
Yingfeng Oh
=4

May 1994

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy (Computer Science)

Yingfeng Oh By ¥iss

This dissertation has been read and approved by the Examining Committee :

Dissertation Advisor: Sang H. Son

Committee Chairman: Jim Cohoon

Committee Member: Barry W. Johnson

Committee Member: Paul F. Reynolds, Jr.

Committee Member: Jorg Liebeherr

Accepted for the School of Engineering and Applied Science :

Dean, School of Engineering and
Applied Science

May 1994

In memory of my father,

who taught me

BHAEN . & RIEGA.

(1f youth only knew! If age only could!)

Acknowledgements

Without the encouragement and support of many people, this thesis would never have been
written. These people have contributed to the completion of this thesis and the fulfillment of my edu-
cation here in their unique ways.

Special thanks go to my advisor Sang H. Son, for his support and guidance during the last
three years. When | was going nowdet was his patience and encouragement thatigint me
back to the track. | am indebted to him in many other ways.

| wish to thank the other members of my committee for their advice and wisdom. | thank
Jim Cohoon for his willingness to take overnding the thesis at the last moment analjoling
valuable advice to impwve the quality of the thesis aftendar Jorg Liebeherralong with Almut
Burchad, contributed many wonderful ideas that led to the woekegmted in Section 2.3 and Sec-
tion 3.6. Ever since | took his course in fault-tolerance computing, Bardpkvison has been an
inspiration to me: to be a better person and a bettefgssional. | am surprised at the edpaul
F. Reynolds, Jr. took ireading my thesis and the soundness of his advice on scheduling a meeting.

| would like to thank my former advisor Rober®ok for his support in my first two years
here and for his much valuable advice. | would also like to thank all thiegsors with whom |
have interacted, particularly Anita Jones, Gabriel Robins, Jack Davidson, 8lifi] ¥Yim Ortega,
Worthy Martin, Jim French, Jeff Salowe, and John Knight.

| thank David Verme, Juhnyoung Lee, Chris Koeritz, Dongwei Liao, asthTong Zhang
for their friendship, and Mike Alexander, Kevin Wika, Lifeng Hsu, Weifeng Zheng, Craig Williams,
Youngkuk Kim, Ambar SarkaCarmen Pancetla, Mark Bailey Sally McKee, im Strayer Rich
Gossweiler, and Chiang Shi-Ching for their help in various ways.

| am grateful for much help provided by Francis X. Mooney and Ginny Hilton.

The families of \Ahg Zhao Qing, Long Dou and Sun Eve, Mary and BcokeY; Steve and
Evelyn Braintwain deserve special thanks for their love, encouragement, and many free meals.

Finally, but not the least, | would like to thank my mathgy bother and the est of my

family for their unyielding love and unwaving support throughout all these years.

“Where there is a will, there is a way.”
-- Anonymous

“So every defect of the mind may have a special receipt.”
-- Francis Bacon, 1561-1626

Abstract

Many applications are not feasible without the support of real-time and fault-toler-
ant computer systems. Timeliness and dependability are properties that predominantly dis-
tinguish a real-time system and a fault-tolerant system from other computer systems. In this
thesis we address the issue of supporting timeliness and dependability by studying four fun-
damental scheduling problems that are inherent to these systems.

The real-time systems we consider are the ones in which tasks are executed period-
ically; each task has an infinite number of requests and there are multiple tasks being exe-
cuted. There arises a problem of scheduling all requests of the tasks on as few processors
as possible such that not a single deadline is missed. This problem has optimal solutions for
a single processor system when tasks are preemptive; the Rate-Monotonic (RM) algorithm
is optimal for fixed-priority assignment and the Earliest Deadline First (EDF) is optimal for
dynamic priority assignment. However, the problem is intractable for a multiprocessor sys-
tem. The main goal of this thesis is to design and analyze algorithms for the problem of
scheduling a set of periodic, preemptive tasks on as few processors as possible such that
task deadlines are met on each processor by the RM algorithm.

We give the best on-line and off-line scheduling algorithms for this problem to date
with regard to worst case performance and average case performance. The worst case per-
formance of the algorithms is shown to have constant tight bounds through complex anal-
ysis and the average case performance is assessed by conducting simulation experiments.
Several new schedulability conditions are also obtained for the RM scheduling.

The second problem is defined the same way as the first one except that instead of
one version, a task has a number of versions that must be executed on different processors
for fault-tolerance purposes. We propose a solution to this problem with its worst case per-
formance analyzed and average case performance simulated.

The third problem is defined the same way as the second one except that instead of

the RM algorithm, the EDF algorithm is used to guarantee task deadlines on each proces-
sor. This problem is equivalent to the problem of packing a list of colorful items into as few
bins as possible without violating the constraint that no two items having the same colors
are packed into a bin. An algorithm is proposed to solve this problem, with its worst case
performance shown to be tightly bounded by 1.7.

Finally we address the fundamental question of scheduling non-preemptive tasks on
a multiprocessor system for tolerance of processor failures or task errors. We show that this
problem is intractable even for three processors with the tolerance of one arbitrary proces-
sor failure. Two heuristic algorithms are then proposed to solve a restricted case of the
problem.

By solving these problems, the thesis contributes to the establishment of a firm the-
oretical foundation for guaranteeing task deadlines in real-time and fault-tolerant computer

systems.

Table of Contents

oo 18 o3 1o o IR 1
1.1 OVEIVIBW ...ttt ettt e e e e e e e e e e e et e e e e e e e e e ee s e bbb e e e eeaeeesessraan e aeeens 1
1.2. Motivations and ODJECLIVESccccciiiiiii bbb breeseesseeereeenees 3
1.3. Assumptions and Problem Statements ... 7
1.4. Related WOTKo 13
1.5, APProaches TAKEN ... e e e 18
1.6. OFQANIZATION ..ttt e e et e e e e e s e et e e e e e s et nnreeeeeeaane 22
Rate-Monotonic Scheduling on a Single Processor Systemcccceevvevvnines 24
2.1. TASK MOAEI .eeeieee e e e e e e e e e e a b e e e e e e eeeeens 24
2.2. S0ME IMPOMANT LEMIMAS ..vuiiiiiiiiiiiiiiiiis et e e e s e e s ee b e e e e aeanaaaae 28
2.3. Period-Oriented Schedulability Conditionsccccoooieii i, 32
2.4. Utilization-Oriented Schedulability Conditionscccccceiiiiiiiiiiiiiiii e, 36
2.5. Miscellaneous Schedulability Conditionsccoovvviiiiiii . 44
Rate-Monotonic Scheduling on a Multiprocessor Systemccccooveveeeeeeieennee. 47
3.1 Fundamental Results of RM Scheduling on MultiproCessorccccccovviviviieenen. 47
3.2. Scheduling Heuristics and Their Worst Case Performance Analysis 51
3.3. Rate-MoNOtONIC-FIrSt-Filcooiiiiiiiiiiii e 55
3.4. Rate-MONOtONIC-BESE-Fitcciiiiiiiiiiiiiiiii e e e 63
3.5. The Refinements of RM-FF and RM-BF ..., 70
3.6. Period-Oriented HeuristiC AIJOItNMSceviiiiiiieii e 74
3.7. Rate-Monotonic-First-Fit-Decreasing-UtiliZationccccovvviiiiiniiiiiiieeeeeeee 85
3.8. Heuristic Algorithms Using the Necessary and Sufficient Condition 105
3.9. Average Case Performance Evaluationc.ccccccccciiiiiiiiiiii 110
3.9.1. Performance Comparison of New and Existing On-line Algorithms 110
3.9.2. Performance Comparison of New and Existing Off-line Algorithms 114
3.9.3. Yet Another Performance Evaluation of the Algorithmsccccoeeee. 116
G 70 0 T 1 U] .o o=V Y/ 122
Supporting Fault-Tolerance in Rate-Monotonic Schedulingc....o....... 123
4.1. TASK MOAEI ..o 125
4.2. The Design and Analysis of FT-Rate-Monotonic-First-Fitccccovveeeennne 127
4.3. Average Case Performance Evaluationccccooiiiiiiiiiiiiiiiniiiiiieeee e 135
Supporting Fault-Tolerance in Earliest-Deadline-First Scheduling 138
5.1. The Design and Analysis of FT-EDF-First-Fitcccccccouniiiiiiiineeiiiiiiiiieeeeen 139
5.2. The Average Case Performance Evaluationccccccccoii 149
Non-preemptive Scheduling of Periodic Tasks for Fault-Tolerance 156
6.1. Non-overlapping of Backup COPIESoovvviiiiiiiiiii 158
6.1.1. Complexity of the Scheduling Problemcccccoooiiiiiiiiiii e, 158
6.1.2. A 1-Timely-Fault-Tolerant Scheduling Algorithmcccccccveiiiinieeneeennns 160
6.1.3. Analysis and Performance Evaluationccccccceeiiiiiiiiricviiiiiii e, 166
6.2. Overlapping of Backup COPIEScoovveiiiiiiiii et e e e 171
6.2.1. Complexity of the Scheduling Problem ..., 171

6.2.2. A 1-Timely-Fault-Tolerant Scheduling Algorithmcccccooviiiiiiiinnneen. 174

7

6.2.3. Analysis and Simulation RESUILSccccvvvviiiiiiiiiiiiiiiiiiiiieiieieeeeeeeseeeee,
(0] o [od 11153 [o SO
7.1 (070 o1 10101 1 o] o 1T PPPPPRPR

7.2. FUTUIE WWOTK ottt et ettt e et e e e e e et e e e e e et reeaeeaenaeee

List of Figures

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20
Figure 3.21
Figure 3.22

Problem STIUCTUIEeiiiiiiieeeeee e 12
Schedule for TWO TasKS.........uuiiiiiiiiiiiiiiieeeee e 26
Theé(N, Y) FUNCLION........oiiiiiiicii e 34
Relationship betwe@nand . ..o 45
AlGorthm RM-FF-WCouiiiiiiiiiiiiiiie e 52
RM-NF-WC vs. Optimal Schedules ... 55
Algorithm RM-FF ..o 56
RM-FF vs. Optimal Schedules.............cooiiiiiiiii e 61
Algorithm RRM-FF ..ot 72
AlGOrtNM RMST e 76
AlGOrthm RMGT ... 79
AlGOrthM RMGT-M ... 83
Algorithm RM-FFDU ... 86
Algorithm RM-FF-IFF ... 106
Algorithm RM-FFDU-IFF ... 108
Performance of Some On-line Algorithms(0.2)..........ovvvvviiiiennnnn. 111
Performance of Some On-line Algorithms(0.5)..........ccccciiivivinnne. 112
Performance of Some On-line Algorithmns(0.7)........ccoociiivvivinnne. 112
Performance of Some On-line Algorithms(1.0).........covvvvviiinnnnnnn. 113

Performance of RM-FF, RM-BF, RRM-FF, and RRM-8E (Q.3) ... 114
Performance of RM-FF, RM-BF, RRM-FF, and RRM-8E (Q.7) ... 115
Performance of RM-FF, RM-BF, RRM-FF, and RRM-BE (.0) ... 115

Performance of Off-line Algorithnts € 0.2) ..o, 117
Performance of Off-line Algorithnts £ 0.5) ..., 117
Performance of Off-line Algorithnts € 0.7)ccoeeeeiiiiiiiiiiiin, 118

Performance of Off-line Algorithns € 1.0)oooovviiiiiiiiiiiiiiees 118

Figure 3.23
Figure 3.24
Figure 3.25
Figure 3.26
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9

Performance of Some Algorithms (Tasks/processor = 3)...........cc.vvveeee. 120
Performance of Some Algorithms (Tasks/processor = 6)...................... 120
Performance of Some Algorithms (Tasks/processor = 3).........ccceeeeeeee. 121
Performance of Some Algorithms (Tasks/processor = 6).............ccceeee. 122
N o o T 11 1 o ¢ 1K 0SSR 127
Y o o 11 1 o ¢ 0 S 128
AlGOrthm FT-RM-FFcoooiiiiii ettt 130
Task Configuration Wh&MK M < 2K ..o 131
Task Configuration WhEeR 2 Mcoooiiiiiiiiiiiiiiiiei e 132
Performance of FT-RM-FF and Algorithnol=1.0).........cccoeeevvennn. 136
Performance of FT-RM-FF and Algorithmol=0.5)ccccoeveeeeeennn. 137
Weighting FUNCHOW(Q)vvvieiiiiiisiee e e e e e e 141
Worst Case Configuration of Zero CoarSeness.......cccevveeeeeeeeeeeeeeeeeeennnnns 144
Performance Comparison of the Four Algorithm (.0)................... 150
Performance Comparison of the Four Algorithm 0.5)................... 151
Performance Comparison of the Four Algorithma (.0)................... 152
Performance of RM-Algorithm L..........cccoorriiiiiiii e, 154
Performance of FT-RM-FF with Sorted INnput.........ccccccoooeeeeiiiiiiiieieennn, 155
Performance of FT-EDF-FF with Sorted INnputooooeiiiiiiiiinnee, 155
Mapping from PARTITION to Task Sequencing..........cccccceeeeeieeeeeennnnn. 160
Mapping from Task Sequencing to PARTITION..........cccoeiiiiiiiiinnennnnn. 161
Algorithm NOV ... 162
Scheduling Process 0f NOVuuiiiiiiiiii e 162
Schedule Generated DY LPTccoiiiiiiiiese e 163
Schedule Generated after Swapping and Appending...........ccceeeeeeeeeenn. 163
AlGOMTNM NOV-TEST...cciiiiiieiiieie e 166
Performance Of NOV ... 168
Relationship Between Performance Parameters........ccccoooeevvviiiiiieenennn, 169

Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18

A Schedule Generated by LPT and NOV_1.....ccccooveiiiiiieiiiiiieeeeeiiiiinnes 170
Mapping from PARTITION to Task Sequencing...........ccccoeevvvviiiinnnne 173
Mapping from Task Sequencing to PARTITION..........ccceieiiiiiinneeennnn. 174
Mapping from Task Sequencing to PARTITION........cccccooeiviiiiiiieeenenns 174
AlGOrItNM OV ..o 176
Schedule created DY LPToovveeiiiiiiee e 177
Scheduling ProCess Of OVuuiiiiiiiiiiiiiiieece e 177
Relationship Between Schedules ..., 181
Performance Of OV ... 184

\Y

List of Tables
Table 1.1 Worst Case Performance of Existing Scheduling Algorithms........... 16
Table 3.1 Worst Case Performance Bounds of RM-FF umder.................. 62
Table 3.2 Worst Case Performance Bounds of RRM-FF under............... 71
Table 3.3 Performance of RM-FFDU for some values.of.......................... 87
Table 3.4 Weighting Function foriX(1/5, 1/4]ccccoumiiiiiiiiiieiiiieeeeeeeee s 90
Table 3.5 Weighting Function for&(ZlM— 1, 1/5] e 93
Table 3.6 Weighting Function forx(1/6, i L] 95
Table 3.7 Weighting Function forR(5(2" > = 1) = 3/5, 1/6]vevveeveerrrrreen... 08
Table 7.1 Performance Bounds of New Algorithms for RMMS...................... 186

vii

List of Theorems

TREOIEIM 2.0 ettt oot et e et e e e e e e e e e e e e e e e e aaaana 26
TREOMEIM 2.2 ..o e e e e e e e e e e e e e e e s s 27
TEOIEIM 2.3 ettt e e e e e e e e e e r et e e e e e e e e e annees 28
TREOIEIM 2.4 ..ottt e e e et e e e e e e e e e 32
TREOIEIM 2.5 ettt e e et e e e e e e e e e e e e e e e e e e aannns 34
TREOIEIM 2.6 ..ot e ettt e ettt e e e e e e e e e e e e e e e e naaannna 35
TREOIEIM 2.7 ettt r e e et e e e e e e e e e e e e e e e e e aaana 36
TREOIEIM 2.8 ...t e e e e e e e e e e e e e e n e aa e 42
TREOIEIM 2.9 et e et e e e e e e et e e e e e b e e e e e e e annees 44
TREOIEIM 2. 10 .ttt e e e e e et e e et e et e e e e e e e e 46
LI LT (=10 0 T PP PPPPPPPPPPPRP 47
TREOIEIM 3.2 e e et e e et e e e e e e e e e e e e e e e e e naaannn 48
LILALST0 (=10 0 TR TR PP PPPPPPPPPPPPP 50
TREOIEIM 3.4 et e e e e e e e e e e e e e e e a e e a s 53
TREOIEIM 3.5 e et e e e e e e e e e e r e e e e e e b e e e e e e e nnees 53
TREOIEIM 3.6 et e 58
LI LST0 (=10 0 T T PO PPPPPPPPPPPR 60
TREOIEIM 3.8 ..ot r e 61
TREOIEIM 3.9 et e e e et e e e e e e e e e e e e e e e e e e 69
TREOIEIM 3.10 ettt e ettt e et e e e e e e e e e e e e e e 70
LI AL (=T 41 T PP T TP POPPPPRPP PN 71
TREOIEIM .12 ...t e e e et e e e e e r et e e e e r e e e e e 74
LI LT C=10 0 0 R PP PPPPPPPPRRPRP 76
TREOIEIM 3. 14 .ttt e et e e e ettt e e e e et e e e e e e e e e e e e e e e e n e e 77
TREOIEIM 315 ettt e e e et e bbb r e e et e e e e e e e e e e e e e e e e e 79

Ll lsTe] (=] A AT TN S TP 83

viii

LI LST0 (=10 0 T A TP PP PPPPPPPPPPPRT 85
TREOIEIM 3. L8 ..ttt r e et e e e e e e e e e e e e e e e e e e 104
TREOIEIM 3.1 ettt et e 106
TREOIEIM 3.20 ... e e e e e e e e e e e e e e 107
TREOIEIM 3.2 ..ottt et e e e e e e e e e e e e e e e 109
TREOIEIM .22 ...t e e e e e r e e e e e e e e e 109
TREOIEIM 4.1 ..ottt e e et e bbbttt e et e e e e e e e e e e e eaeeeeannaaans 128
TREOIEIM 4.2 .ot e e et e e e e e e e e e e e e e e e e a s 133
TREOIEIM 5.0 ettt et r e aaaan 140
TREOMEIM B.1 .ottt e e e e e e e e e e e e e e e e e e aaa 158
TREOIEIM B.2 ...ttt e et e e e e e e e e e e e e e e e e e e e 164
TREOIEIM B.3 ... it e 169
TREOIEIM B.4 ..ottt et e e e e e e e e e e e e e e e e e e aaans 170
TREOIEIM B.5 ..ot e et e e e e e e e e e e aaeeeaaaaaan 171
TREOIEIM B.6 ...t r e et e e e e e e e e e e e e e e e e e e 177

I (=Te] (=] 0 1 1 T AT 182

List of Lemmas

=T 01 0 = PP PP PPPPPPPPPPPPIN 28
LEMIMA 2.2 ... e e e e et e e e e e e 29
LEMIMA 2.3 ... a e e e e et 30
LeMMA 3.1 . a e 56
=T 0 0 = T PP PSRRRPPPPPPPPPPPPPRTPIN 57
=T 00 0 =T TR TP PPPPPPPPPPPRTPTN 58
LEMIMA 3.4 .ttt e ettt e e e e e e e e e e nn e 59
LEMIMA 3.5 .t e e e e e e e e e e e 62
I =T 01 0 = T TG P PUPPPPPPPPTTI 66
LEMIMA 3.7 . e e e 66
LEMIMA 3.8 ..ttt et — e e e e e e e e e e e nnananne 66
LEMIMA 3.0 i et e e e e e e e e e e nnnnnnnn 86
LeMIMA .10 ..ttt e e e e e e e e e e e e n e 87
=T 0 g = Tt TP PPPPPPPPPPTPI 88
LeMMA .12 .. a e 89
LeMMA .13 .. a e 90
LeMMA .14 ..o e et — e e e e e e e e e e e nnnanrnne 92
LeMIMA .05 it e e e e e e e e e e nnnnnnne 94
LEMIMA .16 ..ttt e e e e e e et e e e e e e e e e e e e nnnnnane 97
LEMMA 4.1 .. a e 130
LEMMA 4.2 ... a e e 131
LEMMA 4.3 .. e 134
(IS 0] 0= N PP 134
ST 0] 0= U PP 140
LEMIMA 5.2 .ttt e et e e et et e e e e et e e e e nr 141

[T 0] 0 1= TS TG TR 142

IS 0] 0= U PP 142
(IS 0] 0= T PP 143
LEMIMA 5.6 ..ttt e e e e e e e et e e 145
LEMIMA 5.7 ittt e et e ettt e e e e 146
LEMMA 5.8 ... e e e 147
LEMMA 5.9 . 148
[T 001 0 = G T TP RS PPPPTPPPPPPPPPTRTPN 157
[T 00 00 = G PP PTPPPRPPPPPTPRRIN 157
LEMIMEA B.3 ...ttt e e e et e e et e e e e e e e e e e e e 169
LEMMA B.4 ...ttt e e e et a e 180

LS] 1= S T T 181

List of Symbols

B o9 < T Q

The maximum allowable utilization of a tagk= max (C,/T,) .

The difference between two V values of tasks.

The maximum ratio between any two task periods.

A small positve number.

A time interval.

Another small positve number.

The set of natural numbers.

The maximum redundancy degree of a task, i.e., the maximum number of ver-
sions of a task = MaxX | cicn K-
The redundancy degree of task

A set of tasks.

The starting time of task t (in a schedule).

Theith task. Or the computation time of thle task (in Chapter 6 only).

Theith task assigned on procesﬂfr

Total weight of a task selo = Zm: W(u) .

Theith bin.

Theith item.

The computation time of task..

A time period.

The deadline of task t.

The length (or computation time) of task t.

The number of processors required to schedule a tagk seE;”: N

The minimum number of processors required to schedule a task set.

The number of processors required to schedule a task set by a given heuristic A.

The number of tasks in a set or assigned to a processor.

Xi

Xii

The number of processors to each of which exactly tasks are assigned.

Theith processor (in the processor group P).

Theith processor in the processor group Q.

The worst case performance bound (ratio) for the heuristic A.

The release time of task t.

The period of task;,

The utilization of a task sel = ', C/T; =57 u;.

=171
The utilization of processd?, .
The utilization (or load) of thetask w, G T/
The utilization of tashj,i
The V value of task; . V; = log,T, — |_IongiJ.

Weighting function foru, .

The ratio between the periods of two adjacent tagks. T

/T

i+1 i

Chapter 1 Introduction

“The aim of princes and philosophers is to improve.”
-- Gottfried Wilhelm Leibniz, 1646-1716

1.1. Overview

Scheduling problems occur in a variety of situations in which a sesotircess
to be used to perform a settasks The general problem of scheduling [12] is to allocate
resources for the performance of a set of tasks such that spebjketivesare achieved.
Examples of scheduling problems include

(2) In summer Olympic Games, each game must be scheduled to take place at a cer-
tain site; some games are scheduled for the same site butdoemntitime slots, and some
games must be finished before others begin. For example, no championship game can be
carried out until the games which decide the top two teams have been played.

(2) TV programs are interrupted periodically to show commercials. The number of
commercials to be shown is subject to the constraint that the total time for commercials can-
not exceed the time limit for program interruption.

(3) At an airport with a number of runways, decisions must be made concerning the
assignment of aircraft to runways and the order in which aircraft take laind on these
runways. Furthermore, spare runways must be provided, or enough idle times reserved, for
emepgency situations such as the malfunctioning of some aircraft or the blocking of certain
runways.

In these examples, the sites, the TV network, and the runways are resources and the

playing of games, the showing of commercials, and the tdka-tdnding of aircraft are

tasks to be performed. Our basic thesis is that regardless of the type of resources available
and the character of the particular tasks to be performed, there is a fundamental similarity
among all these scheduling problems: given that the following variables are known, our
goal is to determine the assignment of resources to tasks and the order in which the tasks
will be executed on the assigned resources according to some objectives:

(1) a set of tasks to be performed;

(2) a set of resources or facilities that may be employed in the performance of the

tasks; and

(3) the sequence of elemental activities required to perform each of the tasks and

any restrictions on the order in which tasks are performed.
While determining the assignment and the ordering, one should satisfy the constraints that
are placed on the resources and the tasks. For example, in assigning aircraft to use a runway
the take-dftime and the landing time of each aircraft must be observed; leavinfiaresuf
time between a take-off and a landing might put life in jeopardy.

Many scheduling problems obviously get solved quite casually or automatically:
students finish their degree requirements, professors teach classes, aircraft land, and we get
served in a restaurant. Most of these problems are solved without explicit recognition that
a scheduling problem even exists. Sometimes an ordering is determined by chance; more
often tasks are performed because their deadlines are close. In many situations, a schedul-
ing problem is worth considering because a proper scheduling decision may result in saving
time and resources, or minimizing costs. For example, proper allocation of resources and
ordering of tasks to be performed in a car factory may speed up the manufacturing of cars
and make the business more profitable. In many real life problems, poor scheduling deci-
sions can lead to excessive costs. Even more critical are cases where it is necessary to com-
plete the tasks before some prescribed deadlines, or else irreparable loss might be incurred.

This thesis concerns itself with one aspect of the general scheduling problem, that

of scheduling a set of tasks to meet their deadlines, under the constraint that all task dead-
lines must be honored. The scheduling problem will be studied in the context of real-time
and fault-tolerant computer systems, though many of the results are valid for problems in

other fields as well, for instance, a variation of the classical bin-packing problem.

1.2. Motivations and Objectives

Many applications that are mission-critical and life-critical, such as space explora-
tion, the operation of nuclear power plants and defense systems, aircraft avionics, and
robotics are not feasible without the support of computer systems. These applications
require long duration of reliable operations as well as timeliness of operations. Computer
systems that are used to support these applications are mainly parallel or distributed sys-
tems that are embedded into complex (or even hazardous) environments. The two most
sought-after properties of these systemgiarelinessanddependability

Timeliness dictates that tasks must be finished within certain timing constraints.
Computer systems that support timeliness are referredealasmesystems. The correct-
ness of a computation in a real-time system depends not only upon the results of computa-
tion but also upon the time at which results are generated. There are two major types of real-
time systems: hard and soft real-time systems. In a hard real-time system, a late answer is
awrong answetn a soft real-time system, a late answer may have some diminishing value.

Dependability is the quality of service that a particular system provides, which
encompasses such concepts as reliabditgilability, safety, maintainabilitand perform-
ability [29]. One type of computer systems that support dependability fiatthidolerant
system. A fault-tolerant system can continue to correctly perform its specified tasks even
in the presence of hardware failures and software errors [29].

The timeliness of a real-time system is ensured through scheduling algorithms. One
major characteristic of real-time tasks is the repeated invocation of tasks at certain time

periods, or in the parlance of practitioners, the execution of closed-loop control functions.

A task that arrives at every time interval has an unbounded number of requests, each of
which must be executed by its deadline. The periodicity of real-time tasks comes directly
from applications. For instance, the task of sensing a physical environment for certain
guantities (e.g., the height or speed of a flying space shuttle) must be carried out periodi-
cally. Since there are an unbounded number of requests for each task and there are usually
multiple tasks in a system, there arises a problem of scheduling all requests of the tasks
properly so that their deadlines are met. The development of scheduling algorithms for
periodic task systems has been a major focus in the area of real-time scheduling theory [1,
16, 19, 20, 24, 28, 40, 42, 43, 46, 47, 60, 64, 68, 70].

Since current technology is incapable of producing hardware components which
never fail or software programs which are free of errors, a task might miss its deadline
because of processor failures or task errarsolErate hardware failures or software errors,
hardware and software redundancy techniques can be used. Examples of redundancy tech-
niques areN-ModularRedundancy (NMR) [29], Data-Diversity [35], Recovery Block
[66], andN-version Programming (N-VP) [2]. At the level of task scheduling, hardware
and software are abstracted as processors and tasks. In general, to tolerate processor fail-
ures, redundant processors are used to execute the same software and the final results are
obtained through voting on the multiple resultstdlerate task errors, multiple implemen-
tations of software in the form of either féifent versionsN-VP) or data diversity are
employed. A hybrid approach which combines software and hardware redundancy tech-
nigues can be used to tolerate task errors, processor failures, or both. For fault-tolerance
purpose, associated with a task is a number of versions, that must be executeden dif
processors.

A real-time scheduling theory called Periodiask Scheduling (PTS) has been
gradually accepted as a general theory in supporting timeliness and, to some extent,
dependability in a real-time system. This theory ensures that for a uniprocessor system, as

long as the CPU utilization of all tasks lies below a certain bound and appropriate schedul-

ing algorithms are used, all tasks will meet their deadlines without the programmer know-
ing exactly when any given request of a task is running. Even if a transient overload occurs,
a fixed subset of critical tasks will still meet their deadlines as long as their total CPU uti-
lization lies below a certain bound. This theory puts real-time software development on a
sound analytical footing. The major components of PTS are the Rate-Monotonic (RM)
algorithm and the Earliest Deadline First (EDF) algorithm. The RM algorithm is optimal
for fixed priority assignment for scheduling a set of periodic tasks on a uniprocessor sys-
tem, while the EDF algorithm is optimal for dynamic priority assignment.

First discovered by Liu and Layland [46] and Serlin [68], the RM and EDF algo-
rithms have been proven to be viable scheduling techniques for real-time systems.
Researchers have successfully applied these techniques to tackle a number of practical
problems, such as task synchronization [60], bus scheduling [69], joint scheduling of peri-
odic and aperiodic tasks [77, 79], mode change [70, 81], and transient overload [63]. In
each of these areas, conventional RM and EDF algorithms have been adapted and extended
to produce effective algorithms. Recentlye RM algorithm has been used in a number of
applications. For example, it has been specified for use with software on board the Space
Station as the means for scheduling multiple independent task execution [22]. The RM
algorithm will be built into the on-board operating system, and is directly supported by the
Ada compiler in use.

Although the RM scheduling is optimal for uniprocessor systems with fixed priority
assignment and the EDF is optimal with dynamic priority assignment, unfortymegiely
ther is optimal for multiprocessor systems. In fact, the problem of optimally scheduling a
set of periodic tasks on a multiprocessor system using either fixed priority or dynamic pri-
ority assignment is known to be NP-complete [43]. An optimal algorithm is the one that
uses the minimum number of processors to schedule any task set. Given the intractability
any practical solution to the problem of scheduling periodic tasks on multiprocessor sys-

tems presents a tradetdfetween computational complexity and performance. Several

efforts have been devoted to the development of heuristic algorithms for the scheduling
problem [16, 17, 19, 20]. Howevetue to the dffculty involved in showing the &fctive-

ness of the algorithms, few results have been obtained. In short, the progress in establishing
a firm theoretical foundation for rate-monotonic scheduling on a multiprocessor has been
slow.

The satisfactory solution to the problem of scheduling a set of periodic tasks on a
multiprocessor system has a number of practical implications. Of these, two are very
important: (1) the real-time application domain is becoming increasingl.|As require-
ments of real-time support for industrial and military applications become more sophisti-
cated, the employment of multiprocessors to meet computational power requirements
becomes essential. (2) The state-of-the-art of hardware technology makes multiprocessor
support a reality for many more systems. Thus, the scheduling of periodic tasks on a mul-
tiprocessor has become an urgent problem that needs to be solved.

In this thesis, we will consider the problem of scheduling a set of periodic tasks on
a multiprocessor system such that the task deadlines are guaranteed. Meeting all task dead-
lines is our first objective in solving the problem. In doing so we primarily employ either
the RM or the EDF algorithm. Like so many other multiprocessor scheduling problems,
there is an obvious solution for this scheduling problem: if we use as many processors as
there are tasks, i.e., one processor for one task, then each task will meet its deadline and
hence the scheduling problem will be solved. Aside from the fact that it is likely to be far
from optimal, this solution has little practical relevance. Though current technology makes
it possible to build computer systems that have hundreds of thousands of processors, it is
not cost-eflective to solve the scheduling problem in this manRequiring more proces-
sors in a system fafcts the cost, weight, size, power consumption, and communication
costs of the whole system, the increase of any of which can jeopardize the success of the
whole application. Therefore, besides the objective to ensure that all task deadlines are met,

our second objective in solving the scheduling problem is to use as few processors as pos-

sible to schedule any given set of tasks. This objective will be relentlessly pursued through-
out the thesis.

Our third objective is to support the fault-tolerance of real-time systems. The real-
time systems under study are strictly hard real-time systems, each of which performs its
functions through a set of periodic tasks.ehhance fault-tolerance, we assume that each
task has multiple versions, each of which must be executed feredif processors. For
convenience, we use the word “versions” to mean any of the following: copies of the same
implementation (NMR), versions from thfent implementation strategids$-{/P), or cop-
ies of the same implementation withfdient input and output schemes (Data Diversity).
Since tasks are periodic, all versions of a task are periodic and their deadlines are the same.
When multiple versions are used for a task, the concept of a task becomes an abstract one,
while each of its versions becomes a real entity that is executed perioditaiy the
scheduling problem becomes one to minimize the number of processors used to accommo-
date a set of multiple-version periodic tasks such that the deadline of each task is met and
the versions of each task are executed deréifit processors. Thefeftiveness of these
redundancy techniques, and the selection of a particular redundancy technique to be used
are not considered here. Furthermore, the problems of processor monitoring, failure detec-
tion, failure notification, and voting coordination are beyond the scope of this thesis.

This fault-tolerant scheduling problem, though simplified, captures the two most
important properties of the systems under studypén@dicity of tasks in a real-time sys-
tem and thenultiple executionf tasks for fault-tolerance. The solution to this problem will

inevitably shed more light on building fault-tolerant real-time systems.

1.3. Assumptions and Problem Statements
Since it is known that any slight modification of the constraints imposed on a sched-
uling problem may alter its complexityre meaningful way to approach a scheduling prob-

lem is to state the constraints placed upon the problem precisely before any attempt is made

to solve it. Besides, we should be aware of how our problems relate to other problems that
have been studiedoBchieve these two goals, wéenfa top-down description of the prob-

lems and their relationship to other scheduling problems. A complete description of the
general scheduling problem under various constraints [9, 12, 26], though desirable, is
beyond the scope of this thesis.

Generally a scheduling problem is defined by four parameters: (1) the machine
environment, (2) the task characteristics, (3) the scheduling environment, and (4) the sched-
uling objectives. The machine environment specifies the types of the processors and their
guantity The task characteristics specify the timing constraints of the tasks, the relationship
among them, and the relative importance of the tasks. The scheduling environment
describes the restrictions imposed on the schedule: whether the tasks are preemptive or
non-preemptive, and whether the scheduling is on-linefdmef Finally, the objectives
define such scheduling goals as minimizing the total number of processors, maximizing the
total value of a system, or guaranteeing task deadlines. Our assumptions are as follows:

(1) For machine environment, we assume that processors are identical in the sense
that the run-time of a task remains the same across all processors. Although for the most
part, the number of processors available is assumed to be infinite, recall that our dominant
objective is to use as few processors as possible.

(2) For the task characteristics, we assume that tasks are periodic and have one or
more versions. The release time, computation time, and period for a task cafheary
deadline of each request of a task coincides with the arrival of the next reqs&staiie
equally important in the sense that no missing of task deadlines is allowed. The tasks are
independent in that the requests of a task do not depend on the initiation or the completion
of the requests of other tasks.

The restriction that tasks are independent may seem overly restrictive, because pre-
cedence constraints are usually present in conventional task moeels. cYose look

reveals that it is not possible to impose any precedence constraint upon periodic tasks,

unless all the tasks have the same period. This point can be illustrated by considering the
twotasksit;, =C, T,)and, =G, T,)witl, KT, fork>1, whereC, andT,

are the computation time and period of taskrespectivelylf the precedence constraint

is such that the execution of always precedes thef of , then we have the two cases: if
the precedence constraint is honored, then for eVgryme units,k — 1 requests of task

T, will miss their deadlines. If the deadline constraint is honored,kinequests of task

T, must be executed before one request of task executed, resulting in the violation of

the precedence constraint. If the precedence constraint is reversed, then it can be similarly
shown that both the precedence constraint and the deadline constraint cannot be honored at
the same time. If all the tasks share the same period, the presence of precedence constraints
might be meaningful. Even for this special case, the tasks that share the same period can be
treated as one composite task in the periodic task model. Thereforefeéhendd in task

periods has in fact imposed the characteristic of task independence.

Although it is not sensible to impose any precedence constraint upon periodic tasks,
it may occur in some practical applications that the execution of certain requests of the peri-
odic tasks may trigger the execution of some aperiodic tasks. The scheduling of periodic
tasks together with aperiodic tasks is beyond the scope of this thesis.

(3) For the scheduling environment, we will consider both preemptive and non-pre-
emptive task scheduling, though we will focus more on the preemptive scheduling. If the
tasks are preemptive, then the execution of a task can be interrupted and later be resumed
from where it is interrupted; otherwise, the execution of a task must be finished once it is
started.

Another parameter in the scheduling environment concerns when the characteris-
tics of the whole set of tasks are available. If the entire task set is knpnari, then the
problem is referred to as being-the, otherwise, it is said to be on-line. The algorithm
that solves an on-line (off-line) problem is referred to as an on-line (off-line) algorithm.

While off-line algorithms have the advantages of beiriigieht and invoking min-

10

imal run-time scheduling overhead, there are situations where on-line algorithms must be
used. For example, a change of mission in an application may require the execution of a
totally different task set. Or the failure of some processors may necessitate the re-assign-
ment of tasks. In these scenarios, the entire task set to be scheduled may change dynami-
cally, that is, tasks can be added or deleted from the task set on-te-flyill develop

both off-line and on-line algorithms for the scheduling problems.

(4) The scheduling objectives are (i) to meet all task deadlines, (ii) to minimize the
number of processors required to accommodate a task set such that all task deadlines are
met; and (iii) to support fault-tolerance if a task has multiple versions in execution.

The general solution to a multiprocessor problem involves two algorithms: one to
assign tasks to individual processors, and the other to schedule tasks assigned on each indi-
vidual processor.Wo major approaches exist for assigning tasks to procegsotision-
ing andnon-partitioningapproaches. In a non-partitioning approach, each occurrence of a
task may be executed on afdrent processpmwhile a partitioning approach requires that
all occurrences of a task be executed on the same procEssqartitioning approach is
often preferred because relatively low overhead is involved in the scheduling process.

A scheduling algorithm provides a set of rules that determine the processor(s) to be
used and the task(s) to be executed at any particular point in time. One way to specify a
scheduling algorithm is to allocate priorities to requests such that a higher-priority request
has precedence over a lowerority request in execution. will consider only priority-
driven scheduling algorithms. Priority-driven scheduling algorithms can be classified into
two categories: fixed priority and dynamic priority assignment algorithritb.aNixed pri-
ority assignment, the priorities of tasks, once assigned, will not be chaniged.di¢hamic
priority assignment, the priorities of tasks can be changed dynamically in execuéion. W
will consider multiprocessor heuristic algorithms based on both fixed priority and dynamic
priority assignment.

Now we are ready to define the scheduling problems more rigor@usigt ofn

11

tasksz = {1,, T, ..., T} isgivento be scheduled on a number of processors. Each task
is characterized by the tupler; = ((C,;,C,, ..., CiKi) ,R,D;, T.), where

Cipr Ciprvvns CiKi are the computation times of the versions of task;. R;, D;, andT; are

the release time, deadline, and period of tastespectivelyThe first request of the task
arrives or is released at tirfk, and the subsequent requests are released atRintgs

T, withj =1, 2,.... If T, is specified as a variable, then the task system is termagaean
riodic task system. Otherwise, it ipariodictask system. The deadlibe for a request of
taskr; is defined to be the momedt time units away from the release time of the request.

In other words, the deadlifi® s relative to the release tirig. IfT, < , then the deadline
of a request is shorter than the period of the task, i.e., the current request of a task must be
finished before the arrival of the next request. If a task has multiple versions for fault-tol-
erance, the request of a task constitutes the request of all its versions.

A k-Timely-Fault-Toleranthereinaftek-TFT) schedule is defined as a schedule in
which no task deadlines are missed, depatebitrary processor failures or version errors.
Then, given a s&X of n tasks,m processors, the scheduling problérareinafter referred
to as the TFT scheduling problem) can be defined, in terms of a decision problem, as decid-
ing whether there exists a schedule, whick-T$-T for the task seX onm processors. In
reality, it is more likely that a task s&tis given and the scheduling goal is to find the min-
imum number of processong such that &-TFT schedule can be constructed for the task
setZ onm processors. This problem then becomes an optimization problem.

Since a comprehensive study of the various cases of the TFT problem is beyond the
scope of this thesis, we will focus our attention on four problems. The first problem is the
development of dtient heuristic algorithms for scheduling a set of periodic tasks on a
minimum number of processors such that the task deadlines are met on each processor by
the RM algorithm. The second problem is to support fault-tolerance in rate-monotonic
scheduling on multiprocessor systems. The third problem is to support fault-tolerance in

earliest deadline first scheduling on multiprocessor systems. Finally, the last problem con-

12

siders the fault-tolerance of the systems where the execution of tasks cannot be interrupted.
Because of its relative importance and practical relevance, the first problem is the major
focus for this thesis. The relationships among some of the pertinent scheduling problems

are given in Figure 1.1.
The General .
(Scheduling Problem) O Problems under study

/ I:l : Related Problems

Aperiodic Periodic
Preemptive Non-preemptive
Uniproctessor Multiprocessor Uniprocessor Multiprocessor

/ N\

Fixed Dynamic Fixed Dynamic . .
Priority Priority Priority P%ority ulti-Version
(RM) (EDF) (RM) (EDF) (Problem 4

Uni-Version
(Bin-packing)

ni-Versio ulti-Version ulti-Version
(Problem Problem 2 (Problem 3

Figure 1.1: Problem Structure

Problem 1: Consider a computer system in which all tasks are periodic. For each
periodic task, there are an infinite number of requests, each of which must be executed
before the next request arrives. The arrival of a request occurs at a fixed time interval. The
deadline of a request is defined as the arrival of the next request. Given a set of such tasks,
what is the minimum number of processors required to execute it such that every request
of every task finishes at or before its deadline by the RM algorithm? Note that we assume
that a processor can only execute one task at a time and once a task is assigned to a proces-
sor, all its requests will be executed on that proce3sw execution of a task may be inter-
rupted and resumed at another time on the same prac€hsoe is no cost or time loss

associated with such an interruption or “preemption”. This problem is referred to as the

13

Rate-Monotonic Multiprocessor Scheduling (RMMS) problem.

Problem 2. Consider a computer system in which tasks are not only periodic, but
also have a number of versions. Like a task itself, a version also has an infinite number of
requests, that must be executed like the requests of a task. The fengnd is that a cer-
tain number of versions belongs to a task, and no two of them should be executed on the
same processorhe idea of using “version” is to provide an abstraction over various redun-
dancy techniques used to provide fault-tolerance capabilities in a computer system. The
number of versions a task can have is called the degree of redunt@dggree of redun-
dancy may dier from task to task. Given a set of such tasks, what is the minimum number
of processors required to execute it such that all requests of all versions finish within their
respective deadlines using the RM algorithm? This problem is referred to as thedkault-T
erant Rate-Monotonic Multiprocessor Scheduling-BBMMS) problem. ClearlyRMMS
is a special case of FT-RMMS when the number of versions of a task is one for all tasks.

Problem 3 If the task deadlines on each processor are guaranteed by the EDF algo-
rithm instead of by the RM algorithm as in Problem 2, what is the minimum number of pro-
cessors required to do so? This problem is referred to as the BEuHAL Earliest-
Deadline-First Multiprocessor Scheduling (FT-EDFMS) problem.

Problem 4 What is the time complexity of scheduling a set of non-preemptive
tasks to a number of processors such that processor failures can be tolerated? Given a set
of non-preemptive tasks, each with a primary copy and a backuphmpyghould they be
scheduled such that task deadlines are met despite one arbitrary processor failure, i.e., how

is an 1-TFT schedule generated?

1.4. Related Work
We review the existing work according to the preemption of tasks; work on preemp-
tive scheduling is first reviewed, followed by work on non-preemptive scheduling.

If a set of tasks can be scheduled such that all task deadlines can be met by some

14

algorithms, then we say that the task s&asible If a set of periodic tasks can be feasibly
scheduled on a single processben theRate-MonotonidRM) [46] or Intelligent Fixed
Priority algorithm [68] is optimal for fixed priority assignment, in the sense that no other
fixed priority assignment algorithm can schedule a task set which cannot be scheduled by
the RM algorithm. The RM algorithm assigns priorities to tasks according to their periods,
where the priority of a task is in inverse relationship to its period. In other words, a task
with a shorter period is assigned a higher priofiitye execution of a low-priority task will

be preempted if a high-priority task arrives. Liu and Layland proved that arspedbdic

tasks can be feasibly scheduled by the RM algorithm if the total utilization of the tasks is
no more than a threshold numpehich is given b)nHZl/n — 1H. The utilization of a task

is defined as the ratio between its computation time and its period, and the total utilization
of a set of tasks is the sum of the utilizations of all tasks in the set.

Three other schedulability conditions were later developed by Dhall and Liu [20] in
developing heuristic scheduling algorithms for multiprocessor systems. All these condi-
tions are sdicient conditions. Lehoczkysha, and Ding recently discovered a schedulabil-
ity condition that is both necessary and sufficient [40].

For dynamic priority assignment, the EDF algorithm is optimal in the sense that no
other dynamic priority assignment algorithm can schedule a task set which cannot be
scheduled by the EDF algorithm. The request of a task is assigned the highest priority if its
deadline is the closest. Furthermore, a set of periodic tasks can be feasibly scheduled on a
single processor system by the EDF algorithm if and only if its total utilization is no more
than one.

Since the problem of scheduling a set of periodic tasks on a multiprocessor system,
using either fixed priority assignment or dynamic priority assignment, is NP-complete,
heuristic algorithms have been sought to solve it. The approach taken by a number of
researchers [16, 17, 19, 20, 60] is to partition a given set of tasks feteulifgroups, such

that the tasks in each group can be feasibly scheduled on a single processor by a given algo-

15

rithm.

An optimal algorithm for the scheduling problem is the one that uses the minimum
number of processors to schedule any task set. In all studies, the performance of heuristic
algorithms is evaluated against that of an optimal algorithm. In particular for real-time heu-
ristics, the performance is measured using the worst case bouNgs Nf, whereN, is
the number of processors required to schedule a task set by a given heuristidNg,ignd
the number of processors required to schedule the same task set by an optimal algorithm.
Bounds for the existing heuristics are determined by the following expression (whose
meaning will be explained Iateﬂili = lim 00NA/ N, - Dz is often referred to as theorst
caseperformance bound or asymptotig gound of the heuristic A.

Since a set of periodic tasks can be feasibly scheduled by the EDF algorithm on a
single processor system so long as its total utilization is no more than one, the problem of
scheduling a set of periodic tasks on a multiprocessor system where each individual pro-
cessor runs the EDF algorithm can be reduced to the one-dimensional bin-packing problem.
The one-dimensional bin-packing problem is to pack a list of variable-sized items into as
few unit-sized bins as possible. The bin-packing problem has been the focus of intensive
study for many years. A number of efficient algorithms have been proposed and analyzed.
Among the many heuristics, Next-Fit (NF) has a tight bound of 2. First-Fit (FF) and Best-
Fit (BF) have a tight bound of 1.7. First-Fit-Decreasing (FFD) has a tight bourdid9of 1
Any on-line heuristic cannot have a worst case bound lower than 1.5333 [44].

The existing heuristic algorithms that schedule a set of periodic tasks on a multipro-
cessor using fixed priority assignment are summarizedainleT1.1. The measure
O (nlogn) denotes the computation time complexity for scheduling a setasks.

Dhall and Liu were the first to propose two heuristic algorithms for the scheduling
problem [20]. The algorithm$Rate-Monotonic-Next-Fi(RMNF) and Rate-Monotonic-
First-Fit (RMFF), were shown to have worst case performance boundsséfE:E;;é]MNF <

00

2.67,and & Oy e < (4(2Y31(1 + 23 = 2.23. Unfortunately, the upper bound derived

16

for RMFF was incorrect due to several errors in their proof, which are noted in Appendix
A. Furthermore, their RMFF and RMNF are off-line, since they require that tasks must be
assigned in the order of increasing period.

Davari and Dhall later considered two other algorithms cadlest-Fit-Decreas-
ing-Utilization-Factor (FFDUF) andNEXT-FIT-M (NF-M) [16, 17]. The FFDUF algo-
rithm sorts the set of tasks in non-increasing order of task utilization and assigns tasks to
processors in that ordéfhe NEXTFFIT-M algorithm classified tasks intd classes with
respect to their utilizations. Processors are also classifiedliokasses, so that a processor
in k-class executes taskskrtlass exclusivelyTheir worst case performance bounds are

o]

Orrpur < 2, andd gy < Sy WhereSy = 2.34 forM = 4, andSy — 2.2837 wheM
— 00,

The FFDUF algorithm is a static algorithm, sirecgriori knowledge about the
tasks is required, i.e., tasks must be in the order of non-decreasing task periods. In the gen-
eral sense, the NF-M algorithm is an on-line algorithm, but its performance depends on the
pre-selection oM and hencé&,,, whereS, is a decreasing function M, e.g.,S, = 2.34
for M = 4, andS,; —» 2.2837 forM — 0.

Table 1.1: Worst Case Performance of Existing Scheduling Algorithms

o]

Algorithm A O, Complexity Type
RMNF [20] [2.4, 2.67] O (n) Off-line
RMFF [20] [2, 2.237] O (nlogn) Off-line
NF-M [16] < §y— 2.2837 O(n) On-line
FFDUF [17] <20 O (nlogn) Off-line

For non-preemptive scheduling, the problem of minimizing the number of proces-
sors is more difcult. Jeffay Stanat, and Martel [28] have shown that the problem of deter-
mining whether a set of non-preemptive, periodic tasks witlerdifit release times is
schedulable is NP-hard in the strong sense. Furthermore, they have shown that a set of peri-

odic tasks may not be schedulable non-preemptively on a single proesssoif its total

17

utilization is very small, i.e., close to zero.

When the release times of all tasks are the same and the task periods obey a binary
distribution, Gonzales and Soh [24] showed that an optimal algorithm exists forTt. Let
denote the period of théh task. Then by hinary distributionof task periods, they mean
that if the tasks are ordered in terms of increasing period,Tthep= 2T, . The optimal
result can be generalized to include conditions in which tasks are relafed py KT,
wherek is an integer.

Though there have been several works in the literature [4, 5, 36, 45] which deal with
allocation algorithms for fault-tolerant systems, they are developed under vastigrdif
assumptions and are only remotely related to our work. Here we mention several. In order
to tolerate processor failures, Balaji et al [4] presented an algorithm to dynamically distrib-
ute the workload of a failed processor to other operating processors. The tolerance of some
processor failures is achieved under the condition that the task set is fixed, and enough pro-
cessing power is available to execute it. Krishna and Shin [36] proposed a dynamic pro-
gramming algorithm that ensures that backup, or contingency, schedules can be efficiently
embedded within the original, “primary” schedule to ensure that hard deadlines continue to
be met even in the face of processor failures. Unfortunately, their algorithm has the severe
drawback that it is premised on the solution to two NP-complete problems.

Perhaps the most closely related work to ours is that of BannisteriaadiT5].

They considered the allocation of a set of periodic tasks to a number of processors so that
a certain number of processor failures can be sustained. All the tasks have the same number
of clones, and for each task, all its clones have the same computation time requirement. An
approximation algorithm is proposed, and the ratio of the performance of the algorithm to
that of the optimal solution, with respect to the balance of processor utilization, is shown
to be bounded by9m) / (8 (m—r+ 1)) , wheremis the number of processors to be allo-
cated, and is the number of clones for each task. Howgtheir allocation algorithm does

not consider the problem of minimizing the number of processors used, and the problem of

18

how to guarantee the task deadlines on each processor is not addressed. These are very

important considerations which our work addresses.

1.5. Approaches Taken

If we take the timing and fault-tolerant requirements in our scheduling problems as
side conditions and the minimization of the number of processors as the objective function,
then the problems become optimization problems. The available techniques to solve an
optimization problem include graph thepfiynear programming, integer programming,
dynamic programming, and approximation. Except for the approximation technique, most
of the techniques are able to find optimal solutions to the scheduling problems. Unfortu-
nately it may take a considerable amount of time to find the optimal solutions. The approx-
imation technique tends to trade solution accuracy for computation time, i.e., a reasonably
good approximation to the optimal solutions can be obtained by using some simple and fast
algorithms.

The first three problems in Section 1.3 have been proven to be NP-complete. Since
any solutions to an NP-complete problem for optimal results are typically deemed likely to
require exponential time of computation in the worst case, we resort to the approximation
techniques. The approximation algorithms, which are heuristic in nature, areheaitesd
tics, or heuristic algorithmsenceforth.

Since there are potentially numerous heuristic algorithms to solve a given problem,
we need to find the ones that producelistsolutions (i.e., solutions which require the
fewest processors). Since a heuristic algorithm cannot be guaranteed to find the optimal
solutions for all inputs, we are therefore interested in knowing how close a heuristic solu-
tion is to an optimal solution. For our problems, the performance measure of a heuristic
algorithm is the number of processors it requires to execute a given task set. Hence a sen-
sible measure is the ratio between the number of processors required by a heuristic and that

by an optimal algorithm. In other words, if we I¢§ and N, denote the number of pro-

19

cessors required by heuristic A and that by an optimal algorithm, respecthezywe
should develop heuristic algorithms that have a small valdg, 6N,

As we soon discovethe ratioN,/ N, is not a constant for dérent sets of input.

This is because a heuristic tends to perform well on some input and poorly on others.
Accordingly, this performance measure is also problematic if we try to compare the perfor-
mance of diferent heuristics. A solution to this problem is to obtain the mean value of
N,/ N, under diferent probabilistic assumptions of input data. Another solution is to find
the maximum value df,/ N, for any given set of input. The first solution provides us with
insight into the average case behavior of a heuristic, while saying nothing about the worst
case performance of the heuristic. The second solution provides us with the complementary
information. Therefore, in order to effectively evaluate the performance of various heuris-
tics, we will resort to both.

To obtain the average case behavior of the heuristics, one can analyze the algo-
rithms with probabilistic assumptions or conduct simulation experiments. Since a probabi-
listic analysis of our heuristics is beyond the scope of this stuelgmploy simulation to
gain insight into the average case behavior of the heuristic algorithms.

Our approach to analyze the performance of approximation algorithms for various
scheduling problems can be described as follows: we start with a simple but sensible algo-
rithm and analyze its performance, both by proving bounds (or ratios) on what could hap-
pen in the worst case and by devising examples to verify that these bounds could not be
improved. Then we seek alternative algorithms and analyze them. Our goal is to find algo-
rithms that can provide better performance, i.e., lower worst case performance bounds. In
the following, we give a formal definition of the worst case performance bound (ratio). For
more details on formal description of such performance criteria, please refer to [23].

Let 'l be a scheduling problem ahtie any given set of tasks for probl&éhnWe
_Na()

No (1)
Theworst case performance bound (ratid), for an approximation algorithm A

defineld , (1)

20

for probleml1 is given by, =inf{r 21: 0, (1) <r forall instance$ [] Dp}.

For our problems, it suffices to establish the following relation:

N, (1) =ceNy(l) +dforany set of tasks, where andd are constants.

Sinced becomes insignificant whe, (1) is large, we lefl, =, and usél, to
denote the worst case performance bound for convenience.

In the literature, the measuremejhf = NLierN A/ Ny is used frequently to evalu-
ate the performance of heuristics [15, 23]. It is used because there are situations where the
maximum value ofN,/ N, is achieved under some pathological cases, mostly when the
size of the input data is small. In order to avoid such pathological cases, the Niit\df
is used as the worst case performance bound or asymptotic bound instead. For our sched-
uling algorithms, the worst case performance bound definéd,as equal toD°A°. It is
apparent tha’r]X can never be smaller than one, and the smaller the valﬂ§ a$, the
better the performance of an algorithm is. We say that an algorithpras'ably good (or
effective)one if its D: is known to be upper bounded by a number very close to one.

To obtainD: , one should presumably know the valuéNgffor every task set. This
is obviously impossible since the scheduling problem is NP-complete. The approaches to
obtain D°A° therefore depend on the way a heuristic works. Mostly a lower boiz of is
used if it is known. In our analysis, we will rely heavily on a technique that uses mapping
functions to relateN, andl, to one another.

There are several strong reasons for obtaining the worst case performance bound for
our scheduling heuristics: first, it is a good measurement for comparison of various heuris-
tics. Second, since we are dealing with hard real-time systems, the knowledge about the
worst case performance of the heuristics is crucial to guarantee the timeliness of the sys-
tems. This is particularly important when the heuristic algorithm is an on-line one.

As we have mentioned previoudliye general solution to the multiprocessor sched-
uling problems involves two algorithms: one to assign tasks to processors and the other to

schedule tasks on each individual processor. Since our problems of assigning tasks to pro-

21

cessors bear many similarities with the one-dimensional bin-packing problem, we therefore
try to adapt some of the best bin-packing heuristics to solve our scheduling problems. Many
of the bin-packing heuristics are quite simple, and yet are capable of delivering provably
good performance. The major f@ifence between our scheduling problems and the bin-
packing problem is, howevethat the bins in bin-packing have unitary size, while the
“size” or utilization of a processor in our scheduling problems changes dynamically
according to some pre-defined functions. Thigedénce makes the analysis of the worst
case performance of the scheduling heuristics considerably more complicated than that of
bin-packing heuristics. Note that the analysis of bin-packing heuristics is quite complex
even when the sizes of bins are unitary [3, 14, 15, 30, 31, 32, 33, 38, 44, 83].

Since we have chosen to use the rate-monotonic algorithm for guaranteeing task
deadlines on each processor in the first two problems, it seems that the only thing we need
concern ourselves with is the algorithm to allocate tasks to processors, provided that the
condition to schedule tasks on a single processor is known. Since the decision whether a
task can be assigned on a processor is determined by a schedulability condition, the nature
and performance of an allocation algorithm is determined in part by the quality of the con-
dition. For the schedulability conditions reviewed in Section 1.4, the schedulability of a set
of tasks depends not only on the utilization of each task, but also on the number of tasks in
the set. Furthermore, the schedulability of a task set may depend upon the computation time
and period of each individual task, as manifested by the necessaryfanengudondition.

The scheduling problems thus become much more complicated.

The worst case condition (or $iafent condition) of rate-monotonic scheduling has
been presented by Liu and Layland and the necessary dicteatitondition was recently
proven by Lehoczky et al. While the condition givenrtguyzl/n - 1H, wheren is the num-
ber of tasks assigned to a processotoo conservative in assigning tasks to a procgssor
the necessary and $§iafent condition is too complicated to be used and analyzed in an allo-

cation scheme. The other conditions also have the weakness of liding ahd ineffec-

22

tive.

Our approach to tackling the problems is to develop schedulability conditions that
exhibit good performance while remaining simple enough so that the worst case perfor-
mance analysis is still possiblee\hen develop several simple allocation algorithms using
the schedulability conditions. In the analysis of the worst case performance, we not only
obtain the upper bounds of the algorithms, but also provide examples which show that the
upper bounds are either tight or nearly tight. The analysis to determine the worst case per-
formance is non-trivial, since our algorithms are more complex than their bin-packing
counterparts, in the sense that the size of a bin is unitary in bin-packing, while the “size” or
utilization of a processor is a variable.

For the FTEDFMS problem, the schedulability condition is as simple as we can
hope for and our solution to it is quite natural.obtain the tight performance bound of the
heuristic algorithm is, however, quite involved.

Since most of the non-preemptive scheduling problems are NP-complete, it is rea-
sonable to expect that many cases of our last scheduling problem are also NP-complete.
This is indeed the case, as will be shown later. However, this fact does not make the prob-
lems impossible to deal with, rather it requires us to develop heuristic algorithms to solve
them where the problem instances are NP-completewlVfirst prove that a number of
problems are NP-complete and then develop two heuristic algorithms to solve two special
cases of the scheduling problems. Finally, we evaluate their performance through analysis

and simulation.

1.6. Organization

We first present several new schedulability conditions for rate-monotonic schedul-
ing in Chapter 2. Because of the relative importance of the RMMS problem, we devote a
major portion of the work to developing heuristic algorithms to solve it; the results are pre-

sented in Chapter 3. Since theRMMS problem is more general, some of the solutions

23

presented in Chapter 3 may not apply to & p¥esent one solution to the problem and ana-
lyze the performance of the algorithm in Chapter 4. In Chapter 5, we solve the problem of
supporting fault-tolerance in EDF scheduling on a multiprocessor system by proposing a
provably good heuristic algorithm. The problem of non-preemptive scheduling of tasks to
meet their deadlines even in the presence of processor failures is considered in Chapter 6;
also NP-completeness results and heuristic algorithms are presented, iriigpter 7,

we summarize our results and discuss future research directions.

Chapter 2 Rate-Monotonic Scheduling on a Single Pro-
cessor System

“A journey of a thousand miles begins with a single step.”
-- Lao Zi, Dao De Jing

In this chapterwe will first present the task model and review several schedulability
conditions that have been developed. Then we show that the time complexity to test the
schedulability of a set of fixed-priorjtperiodic tasks using the necessary anéicsenmt
condition is unbounded with respect to the number of tasks in a set. Accarauegly
present several new schedulability conditions that afeiguit but are linear in time com-
plexity. Though they are all sigient conditions, these new conditions have some advan-
tages that others do not have: (1) they are mdieiegit than the previously derived
sufficient conditions in the sense that the set of task sets that can be scheduled under the
new conditions properly contains the set of task sets that can be scheduled under those pre-
vious conditions. (2) They are simpler than the necessary aftlesufcondition in that
each of the conditions can be expressed in a well-formed mathematical function. (3) They
require only linear time complexity for the schedulability testing. Many of the new condi-
tions will be used in the next chapter to develop provaligcefe scheduling heuristics

for the RMMS problem.

2.1. Task Model

The tasks to be scheduled have the following characteristics:

24

25

(1) The requests of each task are periodic, with constant interval between requests.

(2) The deadline constraints specify that each request must be completed before the
next request of the same task occurs.

(3) The tasks are independent in that the requests of a task do not depend on the ini-
tiation or the completion of the requests of other tasks.

(4) Run-time (or computation time) for the request of a task is constant for the task.
Run-time here refers to the time a processor takes to execute the request without
interruption.

Assumption (1) requires that each request of a task must arrive in the system at fixed
interval. This precludes some tasks that need aperiodic processing. Recently, several tech-
niques have been developed to schedule aperiodic tasks together with periodic tasks in a
single processor system [18, 65, 79]. The essence of these techniques is either to reserve
processor utilization for aperiodic tasks by approximating aperiodic task execution with
periodic task execution, or to utilize unused time of periodic tasks for aperiodic task pro-
cessing. Assumption (2) requires that the deadline of a request coincides with the arrival of
the next request. This assumption can be relaxed for uniprocessor scheduling [41].
Assumption (4) basically assumes that all processors are identical.

It follows from the task model that a task is completely defined by two numbers, the
run-time of the requests and the request period. The release time of each task di@es$ not af
the schedulability of a set of tasks [46]e\dhall denote atask by the ordered p@jr (

T;), whereC, is the computation time anfj is the period of the requests. The rafio/
T;, which is denoted as; , is called the utilization (or load) of thetask

As we have mentioned in Chapter 1, the RM algorithm has been proven to be opti-
mal for scheduling a set of fixed-priorityeriodic tasks on a single processorthe fol-
lowing, we ofer a brief review on the RM algorithm. For more details, please refer to the
original paper written by Liu and Layland [46].

We define thaesponse timef a request for a certain task to be the time span

26

between the request and the end of the response to that reqeristalhinstantfor a task
is defined to be an instant at which a request for that task will havegestlegsponse time.
Then we have the following theorem [46]:

Theorem 2.1: A critical instant for any task occurs whenever the task is
requested simultaneously with requests for all higher priority tasks.

The implication of this theorem is that if the requests for all tasks at their critical
instants are fulfilled before their respective deadlines by a certain scheduling algorithm,
then the algorithm is feasible. As an example, consider a set of twatask€, F(,)=
(1, 2) andt, = (C,, T,) = (1.5, 5). The total utilization of the task set is therefore given
by 1/2 + 1.5/5 = 0.8. If we assign higher priority then from Figure 2.1(a) we see that
such priority assignment is feasible. Moreovee value ofC, can be increased at most to
2 but not furtherOn the other hand, if we let, be the higher priority task, then task
misses its deadline at t = 2. The valu&gfneeds to be decreased to 0.5 to make such pri-
ority assignment feasible. Therefore, intuitivelgsigning a higher priority to a task with a
shorter period (which is what RM does) yields more feasible schedules. The optimality of

such priority assignment can be in fact established as Liu and Layland did in [46].

|
L5 i I s O ot 1 — I ot
1 2 3 4 5 1 2 3 4 5
15 I e B o t u M | ¢
1 2 3 4 5 > 1 2 3 4 5 >
|— critical time zone_|

critical time zone
(@) (b)
Figure 2.1: Schedule for Two Tasks

The following condition, which was given by Liu and Layland [46] and Serlin [68]
and is hereafter referred to as WCopdt-Case) condition, ensures that a task set can be
scheduled to meet their deadlines by the RM algorithm if the total utilization of the tasks is

less than or equal mﬁZlm— 15 , Whemes the number of tasks in the set.

27

Condition WC: If a set oin tasks is scheduled according to the RM algorithm, then
the minimum achievable CPU utilization riuﬁzl/n—lﬁ. Whenn - oo, nHZl/n—lﬁ -
In2.
The WC condition] ZI”: G/ T = nHZl/n - 1H is a worst case condition, since
there are task sets which are feasible, but cannot be determined to be feasible by the WC
condition. For example, two tasks as givertby= (C;, T,) = (0.4, 1) and, = (C,,T,)
= (0.5, 1) are not feasible according to the WC condition, SEC?glCi/Ti =09 >

ve_ 1H. But they are in fact feasible with the RM algorithm. There are task sets, how-

22
ever that actually meet the worst case condition. For example, a task set corsjsts of
(C;, Ty) = (27°-1, 1) andr, = (C,, T,) = 2- 277, 27%) with $2_ C/T, =

L : : : : .
ve_ 10, where any increase in the valugyf or C, will make the task set infeasible.

22
Another schedulability condition, which is call&(Increasing Perio}l was given
by Dhall and Liu [20] in studying the performance of their multiprocessor scheduling heu-
ristics, RMNF and RMFF.
Condition IP: Let {1, = (C,T,) |i =12 ...,n} be a set ofn tasks with

1/ (n-1)

-1 L L
T,ST,<...<T,andu= Y17 C/T. Ifus (n-1) R —1gandC, /Ty <

2(1+u/ (n=1)) """ Y

—1, then the task set can be feasibly scheduled by the RM algo-
rithm. Asn — oo, the minimum utilization of,, approaches& " - 1.

This schedulability condition requires that the tasks be sorted in the order of non-
decreasing period, thus implying that the task set should be known beforehand. Some of the
task sets that cannot be scheduled by using the WC condition can be scheduled by using
this condition, since this condition takes advantage of the fact that tasks are ordered against
non-decreasing periods.

Dhall [19] also proved the following results:

Theorem 2.2: Let {1,= (C,T) |i =1,2..,n be a set ofn tasks with
T,<T,<..<T,andu; = C,/T,.Ifthe utilizationu = ' _,C/T; of the (- 1) tasks

1/ (n-1)

{Ti|i =2,3,...,n} islessthan or equal t¢n—1) { [2/ (1+u,)] -1} , then

28

the given set of n tasks can be feasibly scheduled by the RM algorithm. Whe# n

(n—1) {[2/ (1+u)]¥ "D

-1} - In(2/(1+uy)).

Theorem 2.3: Let {1,= (C,T) |i =1,2..,n} be a set ofn tasks with
T,<T,<..<T,. Let the utilization of the (r 1) tasks{ri|i =1,2..,n=-1} beu=
$II1C/T,. Ifus (n-1) Y Y _15andC/T,<2[1+u/ (n-1)] Y 1,
then the given set of n tasks can be feasibly scheduled by the RM algorithm.

Lehoczky et al recently obtained the following result, which contains a condition
that is both necessary andfsiént [40]. This condition, which is called tieF condition,
takes into account of both the computation time and period of a task.

Condition IFF: LetZz = {1,= (C, T;) |i =1,2 ...,n} be a set oh tasks with
T,=<T,<...<T,. 1, can be feasibly scheduled by the RM algorithm if and only i
min{ms} ((W, (1)) /1) < 1. The entire task s@tcan be feasibly scheduled by the RM

algorithm if and only ifL = max, L, <1, whereSI = {ij [j=1,...,1; k=1, ...,

1<i<n}

[TV h Wi = 3, G[vT]

2.2. Some Important Lemmas

While the WC condition may be too conservative in assigning tasks to a prpcessor
the necessary and §iafent condition is too complex to be used and analyzed in an assign-
ment algorithm. In fact, the computational time requirement to test the schedulability of a
set of tasks by using the necessary anficgeriit condition is unbounded. In the worst cases,
the time complexity may be more than exponential. This is shown by the following lemma.

Lemma 2.1: The time complexity to use the necessary and sufficient condition is
unbounded. In some cases, the time complexity may be more than exponential.

Proof: This lemma can be proven by constructing the following task set. When the
necessary and didient condition is used to test the schedulability of the task set, the com-
putational time requirement is more than exponential.

A set ofn periodic taskg = {1, = (C,, T)) |i =1, 2 ...,n} is given with the fol-

29

lowing characteristican = |_Ti +1/TiJ, fori =1, 2,..., n— 1. Then the power d§, as

defined in the IFF condition is equal to or greater than the following number:+ n" 2

-1U . _ :
" 15. In other words, assuming that the task set is infeasible, we need

+ ... +n+1:OHn
to verify an exponential number of equations with respegtitoorder to find out whether
taskt,, can be feasibly scheduled with the rest-ofl tasks.

Similar examples that require more than exponential time complexity can be con-
structed. Obvious|ythe computation time requirement is unbounded and may be more than
exponential. |

One of the implications of the above lemma is that we need to find schedulability
conditions that are more timefiefent, though they may not be necess&@gfore we
present the new conditions, a few lemmas need to be established.

Lemma 2.2: Ifatask (C,, T,) cannot be scheduled together with a set®fim
tasks{t, = (C;, T)) |i =1,2...,m} by the RM algorithm and‘OsTlsts ST,
then (2C, 2T,) cannot be scheduled together with the same set of tasks
{t,=(C, T) |i =1, 2 ...,m} bythe RM algorithm.

Proof: Let us denote the task set dft, = (C;,T,) |i =0,1...,m with
TosT sT,<.. =T, as%, and the task set of2C, 2T,) , (Cy, Ty), (Cp To), ..,

(C,y T,) asZ'. Suppose that for task sgttheith task with 1<i < mis the first task to
miss its deadline. Then we claim thatTipX T;, then theth task misses its deadline in the
task se’ , otherwise, tasiRC,, 2T) misses its deadline.

Since (C,, T;) misses its deadline, according to the IFF condition, we have
f(t) = Cof t/ Ty | +C1[/T | +Co[/T,y | +... +C_ [/T,] +C;)/t>1(Eq.2.1)

fort OS= {kTJ |] =0,1,2,..., |, k= 1, 2,..., LTI/T]J}: {To, 2T0, ...,quo, Tl’ 2T1, vy

qlTl’ T2, . T 2T

12T 4,0 T, T}, whereq, = |_Ti/TXJ forx=0,1,...,i - 1.

Case 1: Z; < T;. Let us examine the new functioﬁ:(t) = (2C0(t/ (2TO)1 +
Co{ /T, [+Co /T, | +...+C_4 [/T,y | +C;) It fortOS ={kT;|j=0", 1, 2,...,
irk=1,2,..., |_T|/T]J} = {2T0, 4T0, . 2qO.T0, Tl’ 2Tl’ . qlTl’ T2, . Ti—l’ 2Ti—1)

30

s Q_41 T4, T, }, whereC, =2@andT, =2, andq,, :|_Ti/ (2TO)J :
Since Gt/ T1=2C, [t/ (2Ty) |, we havef (t) () > 1 fort 0{2Ty, 4T, ...,
20y To}
We then claim that 2t/ (2T) | = Co[t/ T for t O{Ty, 2T¢, ..., O1T1, To, ...,
T_,2T 400 T T 1
Sincet > Ty, we writet =wTy + 1, where Osr < Tgandw = 1. If r = 0, then 2
[t/ (2Ty) | =2w/2]zw=[t/Ty]. Ifr >0, then 2t/ (2Ty) | =2 q/2+r1/ (2Ty) |
> |’q + r/T01 . Thereforef (t) =f(t) > 1. In other words, taskC(, T,) misses its deadline.
Case 2T, < 2T, Let us examine the new functidﬁ(t) = (Cl[t/Tﬂ + CZ|’t/T21
+ A G [UT L+ G [UT] +2G) It fortOS ={Ty, Ty, ..., Ti_y, T, 2T}
since[T,/Ty] =2andT,/T,] =1fgr=1,2...,i, we havef (t) (t)>1for
i—1 Tk
f (1) = (20, +2C,+... + 2C, +2G) / (2To)

tO{Ty To oo, T

=(C +Cy+... +C, + G [Tp=1(Tp) > 1 fort = 2T,

In other words, task (24> 2T;) misses its deadline.

Therefore, the lemma must be true.]

Lemma 2.2 is very powerful, since it implies that if a task set is infeasible, then there
exists one that is also infeasible with the same task utilizations but with the ratio between
any two task periods less than 2. In deriving schedulability condition, we need only to con-
sider task sets where the ratio between any two task periods is less than 2, since this is the
worst case scenario.

The following lemma is a reiteration of the fact that was used implicitly by Liu and
Layland to derive their worst case condition. Note that since we are considering the unipro-
cessor scheduling, the total utilization of a task set is equivalent to the utilization of the pro-
cessor on which the task set is scheduled. Hence we use the two terms interchangeably.

Lemma 2.3: ForasetofntaskE= {t1,= (C,T,) |i =1, 2 ...,n} scheduled

by the RM algorithm on a singlequessor system, and thestriction that < T, < ... <

31

T, < 2Ty, the least upper bound of theopessor utilization is achieved whef} =
T,,—T fori=1,2,..,n-1landC, =21, - T,

Proof: Letz = {t1,= (C, T,) |i =1,2 ...,n} be a setohtasks withT; <T, <
.<£T,<2Ty, andC, ,C, ..., C_ be the computation times of the tasks that fully utilize

the processor and minimize the processor utilization,u.e.,z;”: G/ T

Suppose that
C,=T,-T, +A,A>0.
Let
C,'=T,-T,
C, =C, +A
C; =C,
C,=C,

ThenC;' ,C) ,C; ..., C also fully utilize the processdret U' = ZI”: .G/T
Then

U-U=@Q/T)-(/Ty>0.
On the other hand, suppose that

C,=T,-T, -A,A>0.
Let

C, =C,
Then again,C,', C;', C;,

..., C.' also fully utilize the processoLet U' =
Z”_ C'/T..Then
=171 [

32

U-U =-(A/T)+(20/Ty) > 0.
Therefore, ifU is indeed the minimum processor utilization, then
C,=T-Ty
Similarly we can show that
C=T,,-T,fori=2,...,n-1,and
Ch=T1- z:n:_ici =2T - T,

Thus the lemma is proven. [|

2.3. Period-Oriented Schedulability Conditions

In this section, we present several schedulability conditions for the RM algorithm,
which are predominantly oriented towards task periods.

Note that in deriving the schedulability conditions, we want to find out a threshold
number such that at least one task set is infeasible if its total utilization is greater than the
threshold number and feasible if its total utilization is no greater than the threshold.number
The threshold number may be determined by functions of the number of the tasks in the set,
the relative values of the task periods and computation times. Such a threshold number has
been found to be elusive for the necessary aritiguit condition. ét it is possible for suf-
ficient conditions. Even though we cannot avoid the worst case scenario in all these condi-
tions, we want to find out exactlgr nearly exactly the schedulability conditions that can
successfully determine the feasibility of most of the feasible task sets.

. TP%orem 2.4: Let{1;= (C,T) |i =12 ...,n} be asetohtasks. Ley =
Ema)?,j?;% Ify<2and

1/ (n-1)

zi“: C/Tis-1)(y
then the task set can be feasibly scheduled by the RM algorithm. The miniffyry) ef
(n=1) (y

Proof: By Lemma 2.2, we can assume without loss of generality that the task peri-

—1)+2K-1, (Eq.2.2)

1/ (n-1) vn

—1)+ 2§ - lis achieved whep= 2"~

ods satisfy the following relationship:

33

T1ST2S STn<2Tl'
Lety=T,/T,. Hencey < 2.

Then by Lemma 2.3, the minimum utilization of the task set is achieved when

C, =T,-Ty,
C,=T3-T,,
C,_,=T.-T .

_ n-1
Co=T1— 371G =21 - T,

The total utilization of the task set is given by
— n
U= Zi _.G/T,.

RewriteU asU = Z:q:_i (Ti 1 =T)/T, + (@ =T /T,

T
_ i+l : _ —
Letx, = T fori=1,2,...,n=-1ThenC_ /T =(2T - Ty)/Ty= 2/|_||_1 i

-landT,/Ty=y= |_||—1|

U= Z:tixi + 2/|_|i”:_1x -
We need to minimiz& subject to the side conditigr+ n?;ixi . This is achieved
by forming the Lagrangian
L=U+A[y- |_|I _ 1%l

and minimizing the function L ovet s, and

oL g, _ P _
W_l X|_|)\DH 1xim/xi—0for|—1, 2,...,n—1. (Eq.2.3)
1—1 J
6)\ =y- |_||—1 . =0. (Eq.2.4)
Solving thesen equations yields
X, = ol + Ay = yl/(n—l) .
1/ (n-1)

ThereforeU = (n—1) (y
Letf(n,y) =(n—1) (y

decreasing im. To find the minimum of(n, y) with regard toy, we take the derivative of

~ 1)+ 2§ - 1.

1/ (n—1)

—1) + 2 — 1. Then the functiof(n, y) is strictly

34

n(2"" - 1), which
,2).

n-1)E""-1)+22' """ -1

), and increasing within the ra 1e_(1/n

. In other words, the minimum of the function is achieveay)

1-1/n
, 2) becomes insignificant.

1-1n
2

It is also apparent that the functiém, y) is strictly decreasing with regard yo
1-1/n

We plot the functiori(n, y) = (n— 1) (y"' """ =1) + 24 - 1 in Figure 2.2. It is
evident thaf(n, y) is strictly decreasing in. Whenn is large, the increase &n, y) in the

the functionf(n, y) with regard toy and solve foy by setting the resultant equation to zero.

is exactly the result obtained by Liu and Layland.

-1 "V -1)+2-1
within the range [12

We obtainy
range of @

oy
o
AR\
P\
. . é/’,
AR
R
/%o/%o
A
OO
R
R
S
R
¢
,z,o”,
XX

., N} be aset of n tasks. Defike

.,n. Then sort thé/; s in the oder of inceasing value

Figure 2.2: Thef(n, y) Function
12 ..

Though the condition given in inequality (2.2) may yield higher utilization, the

Theorem 2.5: Let {1, = (C, T) |i =12 ..

that requirement is unnecessary if we take advantage of the result in Lemma 2.2. This is
log,T, - |_IongiJ fori

requirement that the ratio between any two task periods is less than 2 is too strict. In fact,

shown by the two theorems as follows:

35

V.-V
and ename them to b, for i = 1,2, ...,n. If Zi”:lCi/Ti < Z”‘lz A

i=1
1+V,-V,

2 " —n, then the task set can be feasibly scheduled by the RM algorithm.

. v, . :
Proof: Since2 ~ < 2, we can assert, by exactly the same reasoning as in the proof

of Theorem 2.4, that the minimum total utilization is achieved when

2 <2< <2<t
Vi+1 Vi
co=2"-2"
Vl Vn
C =22"-2",
fori=1,2,...,n-1.

By similar reasoning, we have

n—lD Vi n—1,Yi+1—V

V. V. V V, V, 1+V,-V,
U=Sy'Iie2 —2'%2'+(2-21—2”)/2”=Z 2Tt T

i=1 n.

The theorem follows through Lemma 2.2. [
Theorem 2.6: Let {1, = (C, T)) |i =1,2...,n} be asetof ntasks. Defike

= log,T; - |_Iog2TiJ fori = 1,2 ...,n,and

B=max .,V -~ min Vi (Eq.2.5)

1<isn’i
If Zn: C/T <(n-1) (ZB/(n_l) -1) + P 1, then the task set can be feasibly
scheduled by the RM algorithm

Vi, -V 1+V,-V
i+1 +2 1

Proof: If we minimize the functiotJ = zi”:_12 " - nsubject to

v
the constraints th& " <2 and;()‘/i <V then the minimum is achieved when

i+1

Vi, -V, =B/(n-1).

i+1
ThereforeU =(n—-1) (ZB/ (=1 _ 1)+ 21_B — 1. Together with Theorem 2.5, we

have that ifzi”: 1Ci/Ti <(h-1) (2[3/ (=1 _ 1) +21_B — 1,then the task set can be fea-

sibly scheduled by the RM algorithm. [|
Corollary 2.1: Let {1, = (C, T) |i =12 ...,n} be a set of n tasks arflbe

defined as in (2.5). If

zinzlci/Ti < max{ In2 1-BIn2} , (EQ.2.6)

then the task set can be feasibly scheduled by the RM algorithm

36

. . L L. .
Proof: Since the worst case condltloEi”:lCi/Ti < n[|21/n—15 is strictly

decreasing with respect tpwe have that

nHZl/n—lg > n|lm°°n[|21/n =In2.
Furthermore, 1f — 1) (ZB/(n_l) -1)+ P Iimoo(n—l) HZB/(n_l) —1H
+ 2P _1=pn2+2/2° - 1> 1-pin2. o
Together with Theorem 2.6, we have proven the corollary.]

We will call the condition in (2.6) theO (Period-Oriented) condition.

2.4. Utilization-Oriented Schedulability Conditions

Theorem 2.7: Let{t, = (C,T,) |i =12 ...,n—1} beasetoh-1 tasks and
it can be feasibly scheduled by the RM algorithm. Among th& tasks, the utilizations
of 0s m< n—1 tasks are known to bg,wy, ... um, and the total utilization of theest of

the n—m-—1 tasks is known to be i.e., u = Z C,/T,. A new task, = (Cp, T,)

i=m+1

can be feasibly scheduled with the 1 tasks on a single pcessor by the RM algorithm, if

0 m -1 —(n—m-1)
02 Dl+uD [1+u/(n=m=1)] -1 -1

CfT< 0 7= 511 rmsn (Eq.2.7)
EQ“_““:1%1+UEI -1 ifm=n-1

This utilization condition is tight in the sense that ¢hae task sets that actually meet this
condition.

Whenm = 0, the expression in (2.7) becon®s T,<2[1+u/ (n-1)] ~(n-1)
— 1. This condition is the same as the IP condition given by Dhall and Liu, except that tasks
are not necessarily assigned in the order of increasing period. The expression in (2.7) pro-
vides not only just one condition, but irfeft, (1 — 1) conditions. Most significantiyno
restriction is placed on the relative order of the tasks to be scheduled.

Whenm=n -1, the expression in (2.7) becomes
-1
C,/T,< 2[|‘|;‘:‘1(1+ui)] -1 (Eq.2.8)

We will refer this condition as tHgO (Utilization-Oriented) condition.

37

If we minimize the expressidd = Z”: 1Ci/Ti overu; in the UO condition, then
1/n

the minimum ofU is achieved when; = 27 -1 fori = 1, 2,..., n. Thus,U =
nHZl/n—lﬁ. This is exactly the same condition as given by Liu and Layland. In other

words, the Liu and Laylanslcondition is a worst case condition in that it is only achievable
when every task has the same utilization; of 2" _1. If the utilizations of the tasks are
not the same, then the bound EI'I”: ,Ci/T; can be significantly higher thaqlfl;zl/n - 1H

in some cases under this new condition. For example Af0.6 andu, = 0.1797, then the
maximum utilization of a task that can be scheduled together with the two tasks according
to the UO condition i€, / T, < 2/[(1 +uq)(1 +uy)] — 1 = 0.06, while it is impossible to
schedule a third task on the same processor by the WC condition.

If we view the schedulability conditions for the RM scheduling as points on a spec-
trum, then on the one end is the worst-case condition by Liu and Layland and on the other
end is the stitient and necessary condition by Lehoczky et al. As we move from one end
of the WC condition to the other end of the IFF condition, the schedulability of the condi-
tions increases, as more information of the tasks is taken into account. In the condition
Zin: G/ T = nHZl/n - 1H, only the number of tasks in a set is considered. In expression
(2.7), starting froom = 0 tom = n — 1, not only the number of tasks in a set is taken into
account, but also the utilization of each individual task. Furthermore, the conditions can be
nicely expressed in well-formed mathematical formula, contrasting the necessary and suf-
ficient condition. The time complexity of all our schedulability conditions remains linear
with respect to the number of the tasks in a set.

Proof of Theorem 2.7 We will obtain the expression in (2.7) through two steps:
one is under the conditian < n - 1 and the other is under the conditior=n — 1.

Let us first form a new task set calledrom the task,, and the set oi(-— 1) tasks
{Ti = (Ci,Ti) |i =12 ...,n=1} suchthakt = {'l'i|i =12 ...,n}.

According to Lemma 2.2, we can assume without loss of generality that the periods

of the task set satisfy

38
%max LE <?
o Mho-~©
We then sort the tasks in the order of the increasing period and rename them appro-
priately such that
Ti<Tr<... ST, <2T;.

Then by Lemma 2.3, the minimum utilization is achieved when

Cl :TZ_Tl'
C2 :Ts—Tz,
Cooa=Th= Ty,

— n-1 —
Ch=Ti- Zizlci =2T; = Ty

This set of tasks fully utilizes the processwmen though there is an unknown quan-
tity C; / T; in the above conditions that has yet to be determined. The unknown q@antity
/| T; corresponds to the origin@}, / T, before renaming. Lefl = ZI”: ,Ci/ T, denote the
total utilization of the new task set. Now notice that the above conditions are symmetric in
the sense that if we multiply 2 to the computation time and period of the firat, tatslen
the utilization of each task (and hence the total utilization af tagks) remains unchanged
and the new task set still fully utilizes the procesgberefore, by applying the multiplying
rule in no more than steps, we can arrive at a new task set wigre the largest period
among alh tasks, withC/T, as the unknown quantitifurthermore, we can let=C,/ T,

fori=1,2,..., mandu= Z”_l C/T,.

i=m+1

Case lm=n-1. Then

- n _ m
U=S"_.C/T, =S, u +C, /T,

l
wherey; =C,/T, =(Tiyg = T) /Tj=Tyy1 /Tj—1fori=1,2,...,n-1

Letx, = T, /T, fori=1,2,...,n-1. ThenCn/Tn =@ -TH)ITy=21

i+1

H?;ixi - 1. Sincex; = u; + 1, we have

_ n-1 _ s U=m o1
Cn/Tn_2/I_|i:1Xi_1_2|:||_|i:1(1+ui)|:| - 1.

39

A task set that actually meets this condition is given as follows:
Let T, = o > 0. ThenC, = ou;. Hence we havel,,; = (1L +w)T, =0
|_|J' _, (1+u),andC , =u; Ty =0U; |_|J' _,(1+uy) fori=1,2,...,n-2.
T, = oﬂj”:"i (1+u),C=0(2- |_|]”:"i (1+u;)). In other words, the task set is given
by
(Cy, Ty = (0uy, 0)

(C5, T2) = (OUx(1 +y), O(1 +uy))

(Chop Thop)=Ou,_, rljn;i (1+u) ’Gﬂjn:_i (1+u))
(C.. Ty =02~ |‘|J“=‘i (1+u)),o|_|jn=_1 (1+u)).

Case 2m < n - 1. The utilization of task'n is determined at the point where the

total utilization is minimized.

Us= Zinzlci/Ti = Zim=1“i +u+C_ /T,
WhereuI =C/T, =(T,,, —T) /T =
ZI —me+ 1C /T

Letx, = T,,,/T, fori=1,2,...,n-1ThenC /T, = (2T -T)T,=2/

|_|I”_ ixl - 1.

T,,/T—-1fori=1,2,..,mandu=

U= z|m: U Tu+2 /|_|in:_ixi - 1. (Eq.2.9)
-1fori=1,2,..,m (Eq.2.10)

_ _ 1
u= Z| —m+1CI/T Zr‘m+1 i - (n-m-1). (Eq.2.11)

To find the minimum, we need to minimize the expressiotJfas given in equa-
tion (2.9) subject to the side conditions (2.10) andl(2.This is achieved by first forming
the Lagrangian

L:U+Zim ((x—1-u) +)\[Z m+1|—(n m-1) - u]

and then minimizing the functidnoverx;’s, Aj’s, andA. This can be accomplished by first

40

taking the derivatives df overx;’s, A;’s, andA, respectivelyand then solving the resultant

equations after setting them to be zero.

oL x-—2 _ =0fori=1,2,...m (Eq.2.12)
ox; Xl_lj—l :
a—L:)\—; =0, fori=m+1m+2,...,n—-1. (Eq.2.13)
oX n-1
i Xirlj-lxj
g—l)‘\ =x-1-y=0,fori=1,2,..,m (Eq.2.14)
i
a—)\—[zl_m+1 -(n-m-1)-u] =0. (Eq.2.15)

In the following we show how the above equations can be solved to obtain the final
results.

By multiplying the 6 — 1) equations in (2.12) and in (2.13) together and manipulat-
ing the resultant equation, we get

2(n—l)/n

n-1., _
[1i-1% = om0 =7 (EQ.2.16)
r]l—l it

By substituting therljn X, in (2.12) and in (2.13) by that in (2.14) and solving

for x's, we have

1/ny (h—-m-1)/n[] [/n
27"\ |-||_1 S

X = ,fori=1,2,...,m. (Eq.2.17)

1/n{p=m [L/n
2 g]i-.MN0 .
%= (m+_1)/n fori=m+1,m+2,..,n-1 (Eq.2.18)
A

Sincex; = 1 +u;, we have for=1, 2,..., m

1/ny (n—-m-1)/n[] [L/n
27 A |_|._1|D

1+u= (Eq.2.19)

By multiplying them equations in (2.19) together and manipulating the resultant

41

eqguation, we get

m
n/ (m

A = 2™ (M memmremm iEm (1] (Eq.2.20)
i=1 S1/n0 [1/n

C_ A
. -1 (:1 O
Since 7., % =n-m-1)+u=(n-m-1))\(ml+1)/nl

, we have

m m+1
A = A 5—[1+u/ (n-m- " (Eq.2.21)

i=1

m
andd = |_| (1+u) . With equations
i=1

U
n-m-1
(2.20) and (2.21) together, we can solveNor

For convenience, we lé&= 1+

_ 2
A= o (Eg.2.22)
With equations (2.19), (2.21), and (2.22) together we can solvg for ’s:
A= 2 —.fori=1,2,....m
(1+u)0A

Then we have

m

2

(n=m=1)m"’

m
M= =3 (Eq.2.23)

i=1 U A
Now we are ready to solve fog’s. With equations (2.18), (2.22), and (2.23)
together we obtain

21/HD m /n
= —AL=1T0 A fori=m+1,m+2,...n-1 (Eq.2.24)
(.)\(m+1)/n - 1 - 1 ymeey . q .

Sincex; =1 +y; fori =1, 2,..., m, we have
C,/T, 2/|_| x -l1=—— -1

In other words, if
2

M, @+]L+u (n-m-1)] n-m-1

C, /T, < -1,

then the new task set can be feasibly scheduled by the RM algorithm.

If n - w, then2/F0A" ™ 15 - 26 S, @] -

42

A task set that actually meets this condition is given as follows:
Let Ty = 0 > 0. ThenC; = ou;. Hence we haveT,,;, = (1 + y)T; =

: _ _ i o
o[1j=. (X+u) . andC;,y =u Ty =0y []i-, (Q+y) fori=1,2.. m-

i—m
1T, .1 =XpTm=0 |_|jm:1(1+uj) T, =XTi=ATi= A 0|_|jm:1 (1+u),G=
i—m .
T,,-Ti=@-1A o|‘|jm:1(1+uj) Jfori=m+1,m+2,..,n-2 C,=0(2-
;‘:‘1 (1+ uj)). In other words, witlo as a variable, the task set is given as
(Cy, Ty = (Ouy, 0)

(C5, T2) = (OUx(1 +y), O(1 +uy))

(Cr-1> Tm1) = OUna [(1+y) o []77 (1+1))
(Cpy Tr) = OU[]o 7 (1+1) O[] (1+4))

(Covpr Toiy) = (- 1)0|_|jm:1 (1+u) ,0|_|J.m:1 (1+u))

(Coizr Tap) = (@-D) A" "o, (1+u), 8" "o [, (1+u))
(Cops Tp_p) = @@A" " =A™, AT EG M (14)
(C,, T =(©@2-0A"""""),0a" " "0). n
The following theorem is a generalized version of Theorem 2.2 by Dhall.
Theorem 2.8: Let {1, = (C,, T)) |i =1,2 ...,n} be asetohtasks andi, =
C,/T,. If the utilizationu = ZI”: ,C/T, of the 6 — 1) tasks{Ti|i =23 ,Nn} is
1/ (n-1)

less than or equal tdn—1) { [2/ (1+u,)] —1} , then the given set of n tasks

can be feasibly scheduled by the RM scheduling algorithm. When o,
(n-1) { [2/ (1+up] "7

Proof: This theorem can be proven as the above theorem.

~1} ~In(2/(1+u)).

According to Lemma 2.2, we can assume without loss of generality that the task

periods satisfy

Ti/Tj<2fori,j=1,2,.,nandi#.

43

We then sort the tasks in the order of the increasing period and rename them appro-
priately such that
TisTo<... T, <2T;.
Then by Lemma 2.3, the minimum utilization is achieved when
C, =TTy,

C2 :T3_T2,

Coct =TTy,
C,=T1- 121G =21~ Ty

This set of tasks fully utilizes the processwen though there is an unknown quan-
tity, u = ZI”Z ,C;i/ T; in the above conditions that has yet to be determined. Note that the
original unknown quantityC, / T4, corresponds to the quantity Gf / T; after renaming,
with i O [1...n] . LetU = ZI”Z .G/ T; denote the total utilization of the new task set.
Now notice that the above conditions are symmetric in the sense that if we multiply 2 to the
computation time and period of the first task then the utilization of each task (and hence
the total utilization of the tasks) remains unchanged and the new task set still fully utilizes
the processor. Therefore, by applying the multiplying rule in no morentetaps, we can
arrive at a new task set whdrgis the shortest period amongrtiasks, withC, / T, as the
known quantity. Furthermore, we can let C/T fori=2,...,n.

ThenU =1 C/T, =51 ,u; +Cy /Ty =u+uy, wherey =C/ T, =(T; 4

-T)/T,=T.,,/Tj—-1fori=1,2,..,n-1

i+1
Letx, =T, ,,/T, fori=1,2,...,n=1LThenC /T, =T -T)T,=2/
n-1
|_|i:1xi -1.
Sincex; = u; + 1, we have
-1 -1
U= zin:zui +Up= U+ Zinzz (x—1) +2/[1 +u1)|_|i”:2xi] -1

We want to find the minimum af = Z”: LU, with u; as a known quantity. This is

44

achieved by finding the minimum bfsinceU = Z|n: LU T Uy
To find the minimum otJ, we use the familiar method of taking the derivative of

U overx; and solving foi; the resultant equations when they are set to zero.

ou _ n-1, 1 _ C_
Era 1-2/[(1 +upx |_|i _,%1=0,fori=2,...,n-1 (Eq.2.25)

1
Through some manipulation of equations (2.25) we obtain that

1/ (n-1)

X =[2/(1+uy))] yfori=2,...,n—-1. (Eq.2.26)

Therefore, the minimum af = ZI”: LU Is given by
v (n-1) _

u= ST 00-1) + 2/ +u)[]TIax]-1=0-1{[2/ (1+uy)] 1}
A task set that actually meets the condition is given as follows:
LetT, =0 > 0. ThenCl =ou,. We also leth = [2/ (1+ ul)] 1/ (n-1) Hence

— T = i - -2 - -
we haveT, ;= xT; —cr|_|j:1xj =o(l+u))A “andC,, =u T ,,= (X,

DT, , =o(d -1 +u,)A' 2, fori=1,..,n-1.

i+1
In other words, the task set is given by
(C,, T;)=(Ou,,0)

(C,, T =(c(A-1)(1 +uy),0(1 +u,))

(Co_y T)= OB -1)@+u, n" 01 +u A")

(C,, Ty =0©A-1)1 +u, ﬁn_z’ o(1 +u,)An—z

)- n
Note that the only diérence between Theorem 2.8 and Theorem 2.3 is that in The-

orem 2.8, no restriction is placed on the period of the task whose utilization is known.

2.5. Miscellaneous Schedulability Conditions

In this section, we present two scheduling conditions that explicitly take into
account the relation among task periods. Though these results are not used in this thesis,
they may be useful elsewhere.

Theorem 2.9: For a set of two tasks with fixed priority assignment, the least

45

upper bound to the pressor utilization is U = 2(q(q+ 1) - q), where q 5 T,/T, | <
1, and | and T, are the periods of the two tasks.

Proof: Let T, andt, be two tasks with their periods beifigandT, and their run-
time beingC, andC,, respectively. Assume thd < T, andT, =qT; +r, whereg= 1 and
r 2 0. According to the RM algorithnt, has higher priority thign

We first claim that the least upper bound of processor utilization is achieved when
Ci=rorCy=To—-qT;.

0 T, 2T qTy (9+1)Ty

Lcy | I Irll -
T>

Figure 2.3: Relationship betweerT; and T,.

Suppose that the two tasks fully utilize the processor with utilization equifto
Cy/T{+Cy/ T

If C; =r +A, where 0 <A <Tj, let us replace, by Ti such tha’d"l =H andC'1 =
r, and increas€, by the amount ofjA needed to again fully utilize the processibmis
increase is the time within the critical zoneTg}, of T, occupied byr, but not byt, . Let
U’ be the total utilization of such a set of tasks. We have

U-U =A/T; =00/ T,=A/TyT, (T, - qTy) 0.

ThereforeU = u.

If C1 =r-A, where 0 <A <Ty, let us replace, by Ti such tha’ﬂ"1 T andC'1 =
r, and decreagg, by the amount of+ 1)A needed to again fully utilize the proces$brs
decrease is the time within the critical zon€Tlf,of T, not occupied by, but byt,. Let
U’ be the total utilization of such a set of tasks. We have

U-U =—A/Ty+ @+ DA/ To=A/TyT,((q +)T, - Tp) 2 0.
ThereforeU = u.
Hence the least upper bound of processor utilization is achieved when

U:C]_/Tl+C2/T2:C1/T1+Q(T1—C1)/(CIT1+C1)

46

Letx=C; /T4, thenU =x+q(1-x) /(g +X). To minimizeU, we set the first deriv-
ative ofU with respect to x equal to zero and solve the resultdetelice equation fot.
We getx=./q(q+1) —q.U=2(/q(q+1) —q). n

Theorem 2.10: For a set of thee tasks with fixed priority assignment, the least
upper bound to the pressor utilization factor is U :a(q2 + b2) / gr, where 5 = qT,, T3
=r1T4, r=aqg+ b, and T, T,, and T are the periods of the three tasks, witheTT, < Tj.

Proof: SinceT; <T,<T3, T, =qTy, T3=rT4,r=aq + b, we havea= 1, b= 0.

Normalize the periods of the tasks by letfing= 1. The total utilization of the three
tasks ardJ =C, / T; +C, /T, +C3/T3=C; +C,/q+ C3z/r. There are two cases to
consider:

Case 1bC; + C, > b. SincebC; + C, >b, C3 =aqg - aC, — aqC;.

U=C,+C,/g+(ag—aC,-aqC) /r

=aq/r+(-agC,/qr+ (r—aqCy/r

>aq/r+(—ag (b—-bC)/ar+ (r-agCy/r

= (aq’ +b%) /qr + (r - aq) (q-b) C1 /ar.

Sincer —aq=Db =0 andqg - b > 0, U is minimized wherC; - 0. ThenU =
(ag” +b%) /qr.

Case 2bC; + C, < b. SincebC; + C, > b, we haveC; =r —rC, — (a+ 1)Co.

U=Ci+Co/q+(r—-rCi—(a+1)Cy) /r

=1+b0-qCy/ar

SincebC; + C, < b, thenC, < b. U is minimized wherC, = b, sinceb-q<0.U =

(aq® +b%) /qr. -

Chapter 3 Rate-Monotonic Scheduling on a Multipro-
cessor System

“Try your best.”
-- Common Sense

In this chapterwe first present some results that are fundamental to rate-monotonic
scheduling on a multiprocessor system. Then we embark on our search for the best heuristic
algorithms for rate-monotonic scheduling on a multiprocessor system, in terms of worst
case performance. At the end of this chapter present simulation results on the average

case behavior of various algorithms.

3.1. Fundamental Results of RM Scheduling on Multiprocessor

Theorem 3.1: If a set of taskg = {1, = (C,, T)) |i =1, 2 ...,n} cannot be
scheduled on N pcessors, then the set of tasks{ t,' = (C/, T;") |i = 1,2 ...,n} given
by

C'=T'+CIT, T =2" .andV; =log,T; - | log,T, |
cannot be scheduled on the N processors either.

Proof: Let us defineT . = max (T;) . For the task sef, we selectT, ;. =
if

min, (T,) and replace the task ;. = (C,i,» Trmin) by @ new task @, 2T

min’ min)

2T min < Thax Clearly the resulting task set due to this replacement cannot be scheduled
on N processors by Lemma 2.2. Furthermore, the utilization of the task is not

changed. We repeat this process until we arrive at a task set sucfi that 2T~ >

47

48

Since scaling a task set by any positive number does not change its schedulability
according to the necessary andisignt condition, we replace every task= (C;, T;) by

—|_|092TiJ _|_|092TiJ . .
C 2 T;) in the task set above. Then we have arrived at a task set

atask @
that was to be obtained.]

Next we answer the question of what the minimum utilization of a setasks is
such that any set oftasks with a smaller utilization is guaranteed to be feasibfe-oh
processors by the RM algorithm. This question is answered in the following two theorems.
The first theorem, first outlined and partially proven by Dhall in his thesis [19], is the key
to the proof of the second theorem. The proof of these two theorems relies heavily on The-
orem 3.1.

Theorem 3.2: If a set of n >1 tasks, each with a utilization less thH&, cannot
be feasibly scheduled on-ri processors by the RM algorithm, then the total utilization of
the set must be greater thaw fiL + 2"

Proof: Let the set ohtasks b& ={t, = (C;, T,) |i =12 ..,n}andy =C/T,
<1/2.

According to Theorem 3.1, we can assume without loss of generality that

T,sT,<...sT, <2T, (Eq.3.1)

Since no two of tha tasks can be feasibly scheduled togetther following con-
ditions must hold according to the IFF condition.
OcC, + Cj >T,
U 1<i<j<n (Eq.3.2)
[2C, + Cj > Tj
Furthermore, sincg; < 1/2, by (3.1), (3.2) we have
T, <T,<..<T, <2T, (Eq.3.3)
We want to find the minimum df = Z”: 1Ci/T, subject to the constraints of

(3.2), (3.3), and (3.4).

C/T, <12 (Eq.3.4)

49

In order to ensure that the minimum is obtained at some point, we replace “>”" by
“>"1in (3.2). This replacement will not affect the minimum.

We proceed in three steps to obtain the minimutd:of

(1) Fix the valuesC = (C,, C,, ...,C.) and expres§ = (T, T, ..., T,) in
terms ofC in the minimization problem.

(2) Prove thaC; <C, <...< C_ <2C, if the minimum is achieved and reduce
the minimization problem to a convex minimization problem.

(3) Solve the minimization problem using standard methods.

First, let us assume th@ = (C,, C,, ...,C) is fixed.

Since

9o =4 (EqQ.3.5)

U decreases as we increa‘ﬁe But the increase o'fi cannot exceed the limit that is

imposed by the constraints in (3.2). In other wotdlgs minimized when

T =min{2C,, ...,2C,_,,C., 5C,} +C, . (Eq.3.6)

i—-1 i+l

fori=1,2,...,n Letm =min{2C,,...,2C,_,,C .., C.} . Then the minimization

i+1

problem becomes

—n _<n
U= Zizlci/Ti —Z.zlci/ (Ci+m) .

Next we claim thaC, <, <...<C_ <2C, ifthe minimum is achieved.
Suppose that the above claim is false. Then we have €itke€, , , or 2C, >C,,.

We will only present the proof to the case®t C since the proof to the case & 2

i+1
> C,, is completely analogous.

If C,2C,,,,then we have by the constraints in (3.2) that

2C;2C+ C .. >T.

i+1
Henceuy; = C; / T; = 1/2, which is a contradiction to (3.4).

Therefore, the minimum is achieved when

50

m =C.

| i+1°
m :2C1,
fori=1,2,....,n—-1.

Accordingly, the minimum ob = z”z C,/T, is achieved when

T, = C+m C+C

i+1°
Tn :Cn +m, :Cn +231,
fori=1,2,....n-1

This becomes a convex minimization problem.

Finally, we solve the problem by using one of the standard methods.
U=y 1C/(C+C,y) +C, /(C, +T,)
=S 11/ (1+b) + -2 b, /(2+|‘|“ 'b,)

=S 11/ (1+b) +1- 21@+[]23 'b,)

whereb; = C;,,/C; fori=1,2,...m-land Z, / C, =2/ [b

=1"i"
6U/6b——1/(1+b)2+2|_| BN WA CAY n e b, ¥=0.

2 _ 1
2|_|J—11¢.b| (1 +b)“ = (2+|_|.n—1b| (Eq.3.7)
fori =1, 2,...,n—1. Then we have
by (1 +bp)? =Dy (1 +by)2
Solving these equations yields=b; = o/n

ThereforeU = n/ Dl + Zl/nH

This bound is tight in the sense that there are in fact some task sets that actually meet

this condition. One of such task sets is given as follows:

Let¢ > 0andC =9 2"". ThenT, =¢2"" 1 +2" ") fori=1,2,...,n -

Next we prove that the result given in Theorem 3.2 holds for any task set.

Theorem 3.3: If a set of n >1 tasks cannot be feasibly scheduled onlnpro-

cessors by the RM algorithm, then the total utilization of the set musiehgigthan
/L + 2Y"8.

51

Proof: In Theorem 3.2, we have proven that if the utilization of each of thgks

. e L L
is less than 1/2, then the total utilization must be greater tiAami + 21/ng

We will prove that the bound af/ Hl + Zl/nH Is indeed the minimum for any task
set by method of contradiction.
Suppose that a lower bound thav Hl + Zl/nH Is achieved with a set oftasks,
in which 0 <k <n of them have utilizations equal to or greater th@i Then there ane-—
k tasks each of whose utilizations is less than 1/2.
Since then — k tasks cannot be scheduledronk — 1 processors and each of them
k 1/ (n—ky U

e _ L
has a utilization less thdi2, we havezi”: Y, Xn-K /L+2] by Theorem

3.2.

—K LU L L.
v (n k)D +k/l2> n/L+ Zl/nD, it contra-

. L
Since Zlnz U2 (n=K/O+2
dicts the assumption that a lower bound is achieved when some of the task utilizations is

equal to or greater than 1/2. Therefore, the theorem must be true.]

3.2. Scheduling Heuristics and Their Worst Case Performance Analysis

With the task model as described in Chapter 2, the problem of scheduling a set of
periodic tasks on a multiprocessor system such that task deadlines are met on each proces-
sor by the RM algorithm can be described as follows:

Given a setofitasks> = {1, = (C, T;) |i =12 , N} , what is the minimum
number of processors required to executenttesks such that their deadlines are met by
the RM algorithm on each individual processor?

Various scheduling heuristics can be developed to solve this problem. One set of
heuristic algorithms to solve this problem can be formed by combining any of the bin-pack-
ing heuristics with any of the schedulability conditions for the RM algorithm. This set of
algorithms can be described as follows:

A= {NF, FF, BF, FFD, BFD, ...} x {WC, IFF, IP, UO, ...} ,

whereNF, FF, BF, FFD, BFDare bin-packing heuristics amiC, IFF, IP, UOare the

52

schedulability conditions for the RM algorithm.

For example, the Rate-Monotonic-Next-Fit (RMNF) algorithm proposed by Dhall
and Liu can be categorized as RMNF-IP and their Rate-Monotonic-First-Fit (RMFF) as
RMFF-IP, since the IP condition is used.

In order to show how the worst case performance bound is generally derived for the
scheduling heuristic algorithms, we present an algorithm called the Rate-Monotonic-Next-
Fit-WC (RM-NF-WC) using the WC condition for the RMMS problem.

The RM-NF-WC algorithm is given in Figure 3.1.

Rate-Monotonic-Next-Fit-WC (RM-NF-WC) (Input: task sek; Output:m)

(1). i := 1, m ;= 1; /* i denotes the ith task, m the number of
processors allocated */

(2). Assign task T, to processor Pm if this task together with the
tasks that have been assigned to Pm can be feasibly scheduled
on Pm according to the WC condition. If not, assign task T, to

Pp+q andsetm=m+ 1.
(3). Ifi<n, theni:=i+ 1 and go to (2) else stop.

Figure 3.1: Algorithm RM-FF-WC

When the algorithm finishes) is the number of processors required to execute a
given set of tasks.

If we letN andNg be the number of processors required by RM-NF-WC and the
minimum number of processors required to feasibly schedule a given set of tasks, respec-
tively, then we want to find the worst case performance bound of RM-NF-WC, i.e.,
D°R°M_ nE—we- If we can prove thaﬂ]:M_ NE-we < @, then we say that the performance
of RM-NF-WC is upper bounded loy If we show thaD°R°M_ NE-wc = O, usually by con-
structing some task sets, then we say that the performance of RM-NF-WC is lower bounded
by a. If we prove both conditions, then we can conclude EEH%;A_ NE-wc = @, i.e, the
algorithm RM-NF-WC has a tight bound of

The general approach to prove the tight bound for a heuristic algorithm involves

two procedures that must be performed simultaneously: on the one hand, we should try to

53

find patterns of input that will result in the worst case performance for the algorithm. On
the other hand, we should try to lower the upper bound by analytic reasoning. There may
be many alternations between the two procedures before the final tight bound is obtained.
The lack of either effort will make a solution incomplete. Although this process of obtain-
ing the tight bound for an algorithm may be a long one, as it is the case for many of our
algorithms, we will not describe the process in this thesis, since finding a bound is one mat-
ter; presenting it may be an entirely different matter.

Next we show that the worst case performance of RM-NF-WC is upper bounded by
2 /In2 Then for any number of processors in an optimal schedule, a task set is constructed
that results in the nearly upper bounded number of processors required by RM-NF-WC.

Theorem 3.4: Let N andN, be the number of pcessorse&quired by RM-NF-
WC and the minimum number obpessors equired to feasibly schedule a given set of
tasks, respectively. ThensN(2/ (In2)) N, + 1= 2.88N, + 1.

Proof: For a processd?;, let 1., T,, ..., T4 be the tasks that have been assigned to

itandt,, , be the first task assigned to procesi?ﬁqrrl. According to the WC condition,
we have
Zi: (U tUg > (s+1) [2V 6D _1] > n2. (Eq.3.8)
— S ;
LetU; =%/ u forl<j<N.
SinceU; ;2ug,, forl<j<N-1,we have
Uj +Uj+1>ln2 (Eq.3.9)

from inequality (3.8).

Summing up thél — 1 inequalities in (3.9) yieldzz;\': 1Uj -U;-Uy>(N-1)
In2. In other Words?_zj.N: LU> (N=1)In2 - Y; + Uy > (N - 1)in2

SinceN, > Z‘N= LU, , we havel < (2/ (In2)) Ny + 1

Therefore,[oy - npowe <2/ 102, |

Theorem 3.5: LetN andN, be the number of pcessorsequired by RM-NF-

54

WC and the minimum number obpessors equired to feasibly schedule a given set of

- >2.87

tasks, respectively. Then,,, \r_wc 2

Proof: LetK be a positive integer divisible by 7, i.K.= 7m, wherem s a natural
number and led be a very small positive number such that ne, wheren is a very lage
positive integer aned is a very small positive number. The relationship betweamnde is
given as follows: given any small numid&mn is chosen large enough andmall enough
such that In2 e > nﬁZl/n— 15 ando = ne.

The set of tasks consists of two sets of task groups, with the numbers of groups
equal to 268/7 in the first set, and((14K) /7) /20] in the second set, wheee= 1 -
5(In2 - 1/2) = 0.034264. In terms oh, the number of task groups in the first set is given
by 20m and the number of task groups in the second set is giverizim) /20]. In the
first set of task groups, it consistsldim pairs of task groups, each of which Iias- 1)
tasks. Note that in thi, y) notation,x andy denote the computation time and the period

of a task, respectively. A pair of task groups is given by

%(mz-l/z D & B

10m :
D20, e d e
0 n

|

In the second set of groups, it ha®2m) /20 | groups, each of which h@6 tasks,

as given by

| (2m) /20 E (300 e & 2490
20

In the RM-NF-WC schedule, the first set of task groups usegpBicessors, since

1/n

In2-1/2 +ne +1/2 > nHZ —1H, as illustrated by Figure 3.2. The second set of task

groups uses$ (2m) /20| processors in total, since 20¢100) + (a —108) = 0.719 -

1721

2106 > 202~ #*~ 19 = 0.705, for smalb.

55

o 1
In2-0.5]
0.5
In2-0.5 Idle
a—105
9 -——- 10 In2-0.5
0 0 0.5 o5 |n2-05
05 [~ 0.5 . Busy
In2-0.5 In2-0.5 In2-0.5
a-10d 0
_ processor
(&) RMNF-WC Schedule (b) Optimal schedule utilization

Figure 3.2: RM-NF-WC vs. Optimal Schedules

In the optimal schedule, tHOm tasks each with utilization factor @2 can be
scheduled usingrb processors. Th&0m tasks each with utilization factor f2 and the
20mntasks each with utilization factor ©tan be scheduled omdrocessors, with a total
utilization of 2n(a —100) left unused for ther processors. This amount of utilization,
i.e., 2n(a —10d), is used to execute the task groups in the second set| Ki2og /20 |
(a0 —=108) 20 < 2n(a —103).

Therefore, the total number of processors required by an optimal algority is
5m + 2m = 7m, while the total number of processors required by RM-NF-WC+s20m
+ | (2m) /20]. The performance bound is thus given by

N _20m+[2m/20|

—_ > — .
N = >2.87, form - o

Hencell g\ ne_we 2 2-87.

Since gy _ nr_we < 2.88, from Theorem 3.4, it is concluded that the bound is

nearly tight. [|

3.3. Rate-Monotonic-First-Fit

In assigning tasks to processors, RM-NF-WC only checks the current processor to
see whether a task together with those tasks that have already been assigned on it can be
feasibly scheduled or not. If not, the task must be scheduled on an idle proeessor
though the task may be scheduled on those processors previouslyaiegdrcbme this

waste of processor utilization, we develop an allocation algori®iviFF, which always

56

checks the feasibility of a task from the first processor to the one on which the task can be
scheduled. Note that we will instead use the new condition, the UO condition in RM-FF.
The Rate-Monotonic-First-Fit (RM-FF) is designed as follows: let the processors be
indexed a®4, P,, ..., with each one initially in the idle state, i.e., with zero utilization. The
tasksty, Ty, ..., T, Will be scheduled in that ordéfo schedulg;, find the least such that
taskT;, together with all the tasks that have been assigned to proégssan be feasibly
scheduled according to the UO condition for a single processor, and assgriddgk
To describe RM-Fkn a more algorithmic format, Idx} ande denote the number
of tasks that have already been assigned to processorfar and the total utilization of
the kj tasks, respectivelyNote that, denotes the utilization of ta$|<andui, j denotes the
utilization of thejth task assigned to proces&rThe RM-FF algorithm is given in Figure
3.3.

Rate-Monotonic-First-Fit (RM-FF) (Input: task sek; Output:m)

(1)i=1m:=1;

@j=1 While (u > 2/g[, (u,+1)g-3 Dog=j+ 13 ;
(3) kj:: kjl A+ U; A Absign task T toP ;¥

4 f(j>m) Then{ m:=j" }

(5)i=i+1

6) If (i>n) Then {Stop;} Else{Goto 2;}

Figure 3.3: Algorithm RM-FF

When the algorithm terminatas,is the number of processors required by RM-FF
to schedule the given set of tasks. The RM-FF algorithm has the following distinguished
property: No incoming task is assigned to an idle processor unless it cannot be assigned to
any processor that has already been assigned some tasks. We will implicitly use this prop-
erty throughout the analysis. In order to obtain the worst case bound, we need some lem-
mas.

Lemma 3.1: In the completed RM-FF schedule, if n tasks cannot be feasibly

scheduled on & 1 processors, then the total utilization of the n tasks eatgr than

57

2l LL1/2
|:| =

n2 —1H.

Proof: The proof is by induction.

n/Hl+2

(1) n= 2. Suppose; andu, are the utilizations of two tasks which cannot be sched-
uled on a processor according to the UO conditionibez,2 (1+ u,) o1 Up Uy =Uy
+2(1+uy) 1 _ 1. To find the minimum of(u) =ug + 2(1+uy) 1 _ 1, we take the
derivative of the functiof(u;), and solve fou, after setting the resultant equation to zero.
The minimum off(u,) is achieved when; = 2Y%_ 1. Thereforau; +u, > 2(21/2— 1).

(2) Suppose the lemma is true for= k , i.e.,

N ke 2- 1. (Eq.3.10)
Then whenn = k+1 , thék + 1)th task cannot be scheduled to any ofkipeo-

cessors. According to RM-FF,
u +u,, ,>202" 2~ 19 for 1<i<k. (Eq.3.11)
Summing up the aboveinequalities yields
T Uk, > 2k o1g (Eq.3.12)
Multiplying k =1 on both sides of inequality (3.10) yields
k U172 U
(k=1) Zi _ U > (k=1 k™ T-10 (Eq.3.13)
Adding up inequalities (3.12) and (3.13) and dividing the new inequality on both
sides byk yields 57 T, > (k+1) Y2

Lemma 3.2: In the completed RM-FF schedule, among all thecessors on

— 1H . Therefore the lemma follows. |

which n> c > 1 tasks ae assigned, theris at most one pcessor with a utilization no

1/(c+1) ,L

greater thancﬁz 1r

Proof: The lemma is proven by contradiction. Suppose there are two processors

V(c+1) L

each of which has a utilization no greater th&'ﬁ 10 , and jleindPy, be the

two processors ang be the number of tasks assigned to proce3seith n; > ¢, a < b,

andi = a, b. Letu;; be the utilization of thgth task that is assigned to procesggior i =

58

1/ (c+1)

a, band 1sjsni.Theanni:1ui,j SCHZ —1Hfori:a, b.

1/ (c+1)

. L LJ
If there exists a numbearsuch thall <x < n, anduy, x> 2 —10, then there

1/ (c+1)

. . e L .
must exist a task with a utilizatieg < 2 — 1, since there are totalfy, > ctasks

L1/ (c+1)

LI
on processoPy, and an: 1Upj S cri2 —10, wherex #y and 1<y < ny,. In other

words, there exists a tagl , on processoPy such thatuy, , < Hzl/(c”) —1H and
zO{L,2..,n} .
, n, L1/ (c+1 L L1/ (c+1 L
Since zjzlui,j + Uy, < C[R ()—15 + 2 ()—1D = (c+1)

1/ (c+1)

.

RM-FF assigns tasks to processors. Therefore the lemma must be true. |

L : . -
—173, Uy ; can be assigned on procesBgr This is a contradiction to the way

Theorem 3.6: Let N and Ny be the number of pcessors requéed by RM-FF and

the minimum number of gressors requad to schedule a given set of taskspectively.

Then N [2+ [3— 27 23/ 2" 2~ 2F]Ng + 1= 2.3y + 1. 005, - <2.33.

In order to prove the above bound, we define a weighting function that maps the uti-

lization of a task to a value in the interval of (0, 1] as follows:
<u<

W(u = { i/a Oasuusejll’ wherea = 2521/3—15

We call that value the weight of the task and the sum of the weights of the tasks
assigned to a processor the weight of the proceBgerweighting function is designed in
such a way that except for some bounded number of processors, the weight of every pro-
cessor in the RM-FF schedule is equal to or greaterlthanthe meantime, the weight of
a processor in the optimal schedule is no greateritlzanVe first prove that weight of a
processor in the optimal schedule is no greater fanThen we prove that with few

exceptions, the weight of every procesBan the completed RM-FF schedule is equal to

k

or greater thaad, i.e.,W(P)= Zi _ lW(u) =1, wherekis the number of tasks assigned

to the processor.
Lemma 3.3: If a processor is assigned a number of tasks., ..., T, with uti-

v Ty
1/3

lizationsu, 2u, > ... 2u_, thenzim: lW(u) <1/a , where a QHZ - 1H

Proof: If u; = a, thenu, <a, sincea=0.52 zm: (W(U) =W(uy) + Zm: ,W(W)

59

=1+ (Zim: ,U)/as< 1+ (1-a)/a=1/a Otherwise {; < a), then Zm: W(w) =
z.m_ u/a<l/a m
i=1"1
Lemma 3.4: Suppose tasks @massigned to pcessors according to RM-FF a
: . L L
processor is assigned m2 tasks andzim: U2 20273~ 10, then Zm: JW(u) 21,
whereu, > u, > ... 2 u_ are utilizations of the m tasks, 1, ..., T, that ae assigned to it.
Proof: Since Zm: Y2 2H21/3— 1H, we either havei; 2 aoru; <a. If u; 2 a,
then Zm: 1W(q) >1 according to the definition of weighting function. Otherwise,
. u,1/3 U
z:m: W(u) = z:m: LU /a>1, sincea= 202" "~ 10, m
Proof of Theorem 3.6 Letz = {1,, T, ..., T,,} be a set ofm tasks, with their uti-
lizations uy, u,, ..., U andw = Zlmz 1W(q) . By Lemma 3.3m < Ny / a, wherea =

173 1H.

22
Suppose that among theprocessors that are used by RM-FF to schedule a given
setX of tasks,L of them havesz(Lﬁ) = 1-B, with B; > 0, wherg ranges over all
tasks in processoramong the. processors. Let us divide these processors into tier-dif
ent classes:
(1) Processors to each of which only one task is assigned. Suppose tigrefare
them.
(2) Processors to each of which two or more tasks are assigned.dsgiote the
number of processors in this class. According to Lemma 3.2, there is at most one
processor whose utilization in the RM-FF schedule is no greateratian

VI 1H. Thereforen, < 1.

22
Obviously,L =n; +n,. For each of the rebt— L processorszj W (Lﬂ) >1, where
j ranges over all tasks in a processor.
For the processors in C|a§$,(zinl: Ui > ny(2"% - 1) according to Lemma 3.1.
Since zlnlz W(y) <Iwe musthave; <a Hencezinlz JW(Y) >ng (21/2 -1)/a
Moreover according to Lemma 3.2, there is at most one task whose utilization is no greater

than (21/2 - 1). In the optimal assignment of these tasks, the optimal nulNgef pro-

60

cessors used cannot be less thar®, i.e.,Ng = ny/ 2, since possibly with one exception,
any three tasks among these tasks cannot be scheduled on one processor.

Now we are ready to find out the relationship betwgemdNj.

w=Y" W(y) >(N-L)+n, (2¥°-1)/a=N-n;—-ny+n; (2% -1) /a

=N-n(1-(2Y%-1)/a)-n,

>N - 2Ny(1 - (21/2 - 1) /a) — n,, wherea = 2H21/3— 1H.

Sincew < Ny /aby Lemma 3.3,

Ng/a=N-2No(l- (2¥% -1) /&) —ny= N - 2Ny(1 - (2"? - 1) /&) - 1.

ThereforeN<[2 + (3— 23/2) /a] Ng + 1. |

Having proven the upper bound for RM;Rfe construct a task set which, when
scheduled by RM-FF, requires nearly the same upper bounded number of processors. This
theorem also serves as a counter example for the claim that Dhall an&MEF is upper
bounded by 2.23 in [20]. Since the tasks in each group has the same utilization and to show
the incorrectness of the upper bound for RMFF in [20], we use the condjdn,, <
2[1+u/ (n=1)]" ™Y —1, instead of the conditioB,, / T, < 2/ Eﬂf;i (u+1)5-1,
without affecting the final result.

Theorem 3.7: Let N and Ny be the number of pcessors requad by RM-FF and
the minimum number of gressors equired to feasibly schedule a given set of tasks,
respectively. Then

Orm_ e 222833 ...
Proof: The proof consists of constructing a task set such that RM-FF exhibits the
worst case performance when it is used to schedule the task set.

Letn = 12k with k= 1. The task set is given as follows: There matasks, each

1/31 .)
—1 +¢, wheres > 0 is a small numbeFor our construction,

with a utilization ofu; = 2
it suffices to let < 0.00006. Next cometasks, each with a utilization af = 2Y°_1 +
€. Finally, there arer2tasks, each with a utilization of = 2% 1 +e,

When this task set is scheduled by RM-#ie firstn tasks will us¢ n/30] pro-

61

cessors, since”’* -1 &> 2%1 + 530521/31— 1+ e[D/BOH -1. The nexin tasks

will take up| . n/4 | processors, sined’°—1 &b 251 + 54521/ -1+ €ED/4D -1
The last 2 tasks will take up 12 processors for similar reason. Thus, the total number of

processors allocated for this task set by RM-AR#s2n+ | n/4 | +| n/30] = 274

(a) Schedule by RM-FF (b) Optimal Schedule
uy Uy L
I I) Idle
[: up Uz Us Busy
- — - -

| | | %] . . .
I o= = Assignment Direction

i U

Z2 R I R us

Uq Uq U3 Uz
uy ug w2 t

Figure 3.4: RM-FF vs. Optimal Schedules

For the optimal schedule, each processor is assigned four tasks anah {otadigs-
sors are required. For each procesids assigned two tasks each with a utilization of

(21/2—1 +¢€), one task ole/s—l +¢), and one task 012(1/31—1 +¢), since 221/2—

+€) + (21/5_1 +E) + (21/31

—1 +¢) <1fore<0.00006. ThereforeN, =n=12(.

ThenN / Ny = 274/ (12X). The bound of RM-FF satisfies

Oam_ e = 274/ (12(k) > 2.2833 n

The bounds for RM-FF were derived under the general assumption that the utiliza-
tion of a task can take any value between zero and one. If the utilization of a task is small
compared to the processing power of a processoshow that the worst case performance
of RM-FF can be significantly improved.

Leta be the maximum allowable utilization of a task, bes max (C,/T;) . Then
we have the following theorem.

Theorem 3.8: Let N and Ny be the number of pcessors requad by RM-FF and
the minimum number of gressors equired to feasibly schedule a given set of tasks,

1/ (1+¢)

respectively. Itk = max _;_,{u} anda<?2 -1, then

62

1/ (2+¢)

Oam_pe(@) €1/[(c+ 1)@ -1)]forc=0,1,2, ...

Table 3.1: Worst Case Performance Bounds of RM-FF undamn

a >0.4142| <0.4142| <0.2599 | <0.1892| <0.1487| <0.02
Dam_ e (@) 2.33 1.92 1.76 1.68 1.63 1.47
1/ (2+¢)

When c- o, [(c + 1)(2 -1)] - In2. ThenD:M_FF(a) < 1/ In2. The upper

bounds of RM-FF with regard w are given in Table 3.1 for a few valuesiof

Proof: For any set oh tasks, Ietzi“: 1 U; be the total utilization of the task set.
1/ (1+c¢)

According to RM-FFif a < 2 — 1, then each processor must be assigned at least

1/ (1+c)

(c+1)tasks sincec(+ 1)a<(c+1) [2 — 1] except possibly for the last processor

According to Lemma 3.2, among all the processors to each of which atcleak) {asks

are assigned, there is at most one processor whose utilization is no greater+#tan (

1/ (2+¢
(2+¢) —1]}szi”:1ui < Np,

1/ (2+¢)

[2 —-1],forc=0,1, 2,... Since N-2){(c+1) [2

we have

N<Ny+2c+1) 2" #*9 -

1/ (2+¢)

1].

Hence,Opy_ge(0) <1/[C+1)(2
1/ (2+¢)

-1)],forc=0,1, 2,..
Whenc - o, [(c + 1)(2 -1)] - In2. ThenD;M_FF(a) <1/In2. |
For future reference, we also prove the following lemma here.

Lemma 3.5: Suppose that in the RM-FF schedule, ¢hae n pocessors on each

1/ (m+1)

of which exactly nz 1 tasks are assigned. Th@i“: 1Y manZ — 1H forn >

m, whereU; is the total utilization of the m tasks assigned tcpssor R If n< m, then
L] L
zin:1Ui S nmgzl/(m+1) 1/m_21/(m+1)D.

Proof: Let us index then processors from to n according to the order in which

—1H—(m+1—n)mHZ

they are assigned tasks in the completed RM-FF schedule. According to Lemma 3.2, there

1/ (m+1)

. . L L
is at most one process@rwith ZEL Uik S m2 — 1] amongn processors.

1/ (m+1)

. L L
If i <n, then we can assume thztrk“: Ui = MR -1 - A, whereA >

0. For each task on the last proces$3griits utilization satisfied:

63

L 1/ (m+1 L
u> (m+1) Y MY _15- Zanlui,k
= (m+1) Hzl/(m+1) _1H_ m|E|l21/(m+:l.) _1H +A= 2:I./(m+:|.) 1 +A
Then the total utilization of process®y is given by
S k= 1y ZMu> meeY ™Y _15 +ma.
1/ (m+1) L

Since each processor has a utilization greaterrﬂ]@l — 1 for the rest of
n-2 processorsiinzlui > (n - 2)m[|21/(m+1) 1D + szl/(m+1) _1H + mA +
mHZleH) - 1H -A= nmﬁzl/(m+ b_ 1D+ (m-1)A= anZl/(m+1) —1H.

If i =n, then suppose the least total utilization among the rest-o1) processors

is Zk Uik = mgzl/(m+1) 1H +A, whereA > 0. Then for each task on procesBgr
1/ (m+1 I_I
u> (m+1) " ™Y _1p- > k= 1Yk
= (m+1) D L1/ (m+1) 1H_ mHzl/(m+1) —1H—A: SV (Mme) 4 A
Then the total utilization of processlé,q is given by
1/ (m+1) LU
zk 1r]kzmu>m52 -10- mA.
. LI
Since each processor has a utilization greater than or eqn@% (m+) _ 10
+ A for the firstn — 1 processors, we have
ST,V > (- 1)m[|21/(m+1) 10 +(n-1Da+m2Y ™Y _15-ma

= anZI/(m”) —1 + (h—-m-1)A.
If n>m, thenzi U; 2 anZl/(m+1) 1H.
LI,1/ (m+1)

fn<m, thenzi _ Uiz nmz —1H — (m+1-n)A. We need to find

L LJ L
the upper bound fak. For each processé& with i <n, Zrk" Uik S mgzl/m—lg and

0 |_|
Zrkn:j_ui . > Dzl/(m+ 1) 1|:| + A. ThereforeA < m|:|21/m 1/ (m+1)

L
$",U; 2 nmegt (Y MoV ™ YVE AL 0andm -
0, whenm - oo.

. We have
1/

—1D (m+1-n) mDZ

Examples can be constructed to show that both bounds are tight. |

3.4. Rate-Monotonic-Best-Fit

When RM-FFschedules a task, it always assigns it to the lowest indexed processor

64

on which the task can be scheduled. This strategy may not be optimal in some cases. For
example, the lowest indexed processor on which a task is scheduled may be the one with
the lagest available utilization among all those busy (non-idle) processors. This processor
could have been used to execute a future task with large enough utilization so that it could
not be scheduled on any busy processors, had it not been assigned a task with a small utili-
zation earlier on. In order to overcome these likely disadvantages, a new algorithm is
designed as follows, which is based on the Best-Fit bin-packing algorithm.

It is a well-known fact that the Best-Fit heuristic has the same worst case perfor-
mance bound as the First-Fit in bin-packing [15]. Yet we cannot automatically conclude
from the bin-packing results that RM-FF and RM-BF will have the same worst case perfor-
mance bound, since the RMMS problem differs from the bin-packing problem (i.e., the
classical one-dimensional bin-packing). The major difference is that the size of each bin in
bin-packing is unitary and the utilization of a processor can assume a value ranging from
In2 to 1 as given by the schedulability condition.

In bin-packing, when an item is allocated by the Best-Fit, the lowest indexed bin in
which the item can be fit and whose content is the largest among all the non-empty bins in
which the item can be fit, is chosen to contain the item. Since the “sizes” of the bins are
unitary, finding the fitting bin whose content is the largest among all the non-empty fitting
bins is equivalent to finding the fitting bin whose available space is the smallest among all
the non-empty fitting bins. This “equivalence” property of Best-Fit does not hold when
Best-Fit is used to schedule tasks on processors. The “unfilled” utilization of a processor is
not only determined by the total utilization of the tasks assigned to it, but also by the num-
ber of tasks. Therefore, it is possible thatatailableutilization of a processor with a cur-
rently large utilization is larger than that of a processor with a currently small utilization.
For example, processéy, is currently assigned two tasks, each with a utilization of
(21/3—1) = 0.259. Then the total utilization of proces&gris U; = 2(21/3— 1) <0.52.

The available (or unfilled) utilization &% is given by3/ (1+u)” -1 = (2>~ 1). For

65

another processé, to which one task with a utilization bk, = 0.52 is assigned, its avail-
able utilization is given by (2 0.52)/(1 + 0.52) > 0.31. Therefore, @neailable utilization
of processoP;, is lager than that of processey even thougty; <U,. The schedulability
condition used in both the calculations is the UO condition.

In other words, there are at least two notablfed#int ways in which the Best-Fit
heuristic can be applied to allocating tasks to processors: one is to find the “fitting” proces-
sor with the lagest utilization, and the other is to find the “fitting” processor with the small-
est available utilization. Presumably these two variations might haeeedif worst case
performance bounds. In the following, we only investigate one variation of the Best-Fit
strategywhere the “best fit” is the “fitting” processor with the smallest available utilization.

Algorithm RM-BF: Let the processors be indexed®asP,, ..., with each initially
in the idle state, i.e., with zero utilization. The tasks, ..., T, will be scheduled in that
order. To schedulg; , find the leastch that task; together with all the tasks that have

been assigned to procesdgr can be feasibly scheduled according to the condition

5 D

2(1+ Uj/kj) 7 — 1 for a single processoand 2(1 + Uj/kj) 7 —1be as small as possi-
ble, and assign task to P, wherekj ande are the number of tasks already assigned to
processoP; and the total utilization of thlq tasks, respectively.

With its “minimal unfilled utilization” strategy in assigning tasks to processors, the
RM-BF algorithmdoes not outperforl®M-FF in the worst-case, as shown by Theorem
3.9. Before we prove the bounds for RM-BF, we need to establish a few lemmas.

Definition 3.1: For all the processors required to schedule a given set of tasks by
RM-BF, they are divided into two types of processors:

Type (I): For all the tasks,, T,, ..., T, with utilizationsuy, u,, ..., u ., that were
assigned to a procesdeyin the completed RM-BF schedule, there exists at least one task
T; withi = 2 that was assigned By, not because it could not be assigned on any processor

i— . i-1
Py with lower index, i.e.y < x, but because %14, Ez: :11U|Ef/ (i—1) Er(n) 1<

A S S i L A is th ber of task igned t B
0 Dzlzluﬂ/nym , W ereny IS Tne number of tlasks assignea 1o proc §or

66

ProcessoPy is called a ¥pe (I) processoiSuch a task; is, for convenience, referred to
as a task with Type (I) property.

Type (II): They consist of all the processors that do not belong to Type (I).

Lemma 3.6: If m tasks cannot be feasibly scheduled onInprocessors accord-
ing to RM-BF, then the total utilization of the tasks is greater ﬂn&ﬁl/z— 1H

The proof of this lemma is the same as the proof to Lemma 3.1.

Lemma 3.7: Inthe complete®M-BF schedule, if the mth task on any of thperl
() processors has Type (I) property, where &) then the total utilization of the first (m
1) tasks on that processor is greater than-{f) Dzl/m H

Proof: Lett, 1, Ty 5 ..., Ty ,_y De the tasks that were assigned a procéjsof

Type (1), andP,, with y <k is one of the processors on whigh could have been sched-

-1 n,
uled, but %1+Ezlmz‘lluk’|%/(m—l)g(m) 1< 2E1+DzI 1Yy, |D/ny%r -1,
whereny is the number of tasks assigned to procégsand whereux, | Is the utilization

of taskt, || on process@,.
Si > 251 + H ™ _1 (note that this i t th
inceu, ; > 2 DZI 1Yy, |D/”yD (note that this is true even though,
is assigned to procesd®y before some of tasks among ﬂg,etasks are assigned to proces-

sorPy), for1<si<m-1, we have

0, Ocn o, o 0, , O=m-1._ O +(m-1)
Uy | >251+Dz|y:1uyy,m/nym —1>251+Dzlm:1uk,m/(m—l)m -1.
Summing up thesgn - 1) inequalities yields
1 [l 1 -1
]m_l > 2(m- 1)D1+D i Uk|D/(m 1) - (m-1).
Solving the above equation yields
Z_m_ 1, > (m-1) El21/m u .

The following lemma is key to the proof of Theorem 3.9.
Lemma 3.8: Inthe complete®M-BF schedule, among thequmessors ofype (I)
on which the second task hag® (1) poperty thee are at most thee of them, each of

LI
which has a total utilization less thémzl/3 10.

67

Proof: This lemma is proven by contradiction. I&tP;, Py, andP; be the four pro-
cessors, each of which has a total utilization less trﬁml/zg— 1H iwifk k<1, i.e.,
U < ZHZ
sz: 1Y, x < ZHZ
sz: Uiy < ZHZ
z:}: U x < 262

wheren; 2 2,n; 2 2,n 2 2, andn = 2 are the number of tasks assigned to proceBsd?s

n

2

LJ
U3_1D

U3_1H

U3_1H

LJ
U3_1D

Py, andP,, respectively.

Let's defineui, 1 anahi’ , to be the utilizations of the first tas}gl and second task
T, assigned to processBy, U 4 and u ,to be the utilizations of the first tass}gl and
second taskj’ , assigned to processr Uy 1 anduk, 2 U g anduL , are similarly defined.
We further assume tha{, is the number of tasks which have been assigned to proégssor
when the second task on proced3as assigned. Note tha& j and 1< n, <n.

There are three cases to consider.

Case 1: Task'sj’ 1 anq, , are assigned to process$yrafter taskri, , Is assigned
to processoP;. Since tasl{j, , isaType () task, the following inequality must hold

-1 [| Oen o, oMW
2(1+ uj) —l<2gl+ szy: 1ui,xD/nyD -1

Note thatny > 2, i.e., other tasks may have been assigned to prodgster task

T, but beforerj’ 1 Is assigned to procesBpr
n

Since L+ Ay Y UL ANG - 1S 2(1+ (U, +y) /D) - 1<
2(1+uy,/2) 2 _1, we have

2(1+u) -1<2(1+u /2) 7 -1 ie, vy, > (1+y,/2)°.

Case 2: ?Jisksrj’ 1 anctjl , are assigned to process$yrafter taskril 1 Is assigned
to processoP; but before taski’ , Is assigned to processor

.) 1/3

This case is impossible with RM-BF scheduling. S“E?: (Ui < 227 "-1)

andu, ; > Q1/2—1) according to Lemma 34T, , Qéf3—1 - 621/2—1) = 0.1056.

68

Since taser , Is assigned to proced3doefore tashi’ , Is assigned to proced3oand

taskt; , is a Type (1) task,@ +u; ;) To1s 2((1+y, 4) -1 e,

U <Uj ;. (Eq.3.14)
Since taski, , is also a ¥pe (1) task, it must be true according to the definition that
-1 0, , O<n, o, O
2(1+Ui’1) _1<2D1+ szzluleD/nZD -1,

wheren, is the number of tasks that have been assigned to proBgsstar taser , » but

before taski, , Is assigned to procesdgr Note that it is conceivable that other tasks may
have been assigned to proced3after taser , but before task; , is assigned to proces-
sorp;.

since A1 +u,) ~1< 291+ By u g -1<2@+u) -1,
we haveui, 1 g This is a contradiction to inequality (3.14).

Case 3: Taskj, 1 Is assigned to processgrafter taskr; , is assigned to processor
P;, and taskrj’ , Is assigned to procesd@rafter taskr; , is assigned to procesd®r Since
tasij’ , is a Type (l) task, the following inequality must hold

20y) 1< B5 Y 0, FnEY 1

Note thatny > 2, i.e., other tasks may have been assigned to pro¢gsHter task
T, but beforerj’2 is assigned to procesBpr

Since %1 + EZ;V: 1uiyxg/nygn
2(1+vy,/2) 2 _1, we have

y

- 1< 2(1+ (U +u 2)/2)_2 - 1<
2(1+u) —1<2(1+u /2) 7 -1 ie, 1+ U, > L+, /2F
Therefore for processoP andP;, we have

1+u ;> (L+y, / 2¥. (Eq.3.15)
For the tasks assigned on processprandPy, andPy andP,, it can be similarly

proven that

1+u ;> (L+y, | 2% (Eq.3.16)

1+u >0 +u, /2F (Eq.3.17)

69

Summing up inequalities (3.15), (3.16), and (3.17) yie|ds> (uf 1t uﬁ 1t ui 1)

[4 +uy; ,.Sinceu; ; > (21/2—1), u 4> (21/2—1), andu, ; > (21/2—1) according to
Lemma3.7y, ;, > 31/2— 13/4+ (21/2—1) =0.5429 > 2(1/3—1). This results in a

Qﬁ/(g'—l). |

Theorem 3.9: Let N andN, be the number of pcessorsequired by RM-BF and

contradiction to the assumption thEtZ': 1Y«

the minimum number of gressors equired to feasibly schedule a given set of tasks,

(o]

respectively. Then 2.28330;,,_gr < 2.33

Proof: Similar to what we have done in Section 3.3 for the RM-FF algorithm, we
use the same weighting function to map the utilization of a task into the real intefMal [0,
Note that all the relevant lemmas in Section 3.3 hold for those processgpedflYin the
RM-BF schedule.

LetZ = {1, 1, ..., T,,} be a set oim tasks, with their utilizations,, u,, ..., u
1/3

m
respectively, and = Zm: lW(u) . By Lemma 3.3w< Ny / a, wherea = ZHZ - 1H.

Suppose that among thenumber of processors required by RM-BF to schedule a
given set of tasks M of them are processors of Type (I). Since all processors of Type (I)
must be assigned at least two tasks, there exists for each processor amelsech that
themth task is a ¥pe (l) task. For all the processors ¢p€& (I) on each of which theth
task is a ype () task withm= 3, we havezj W (Lﬁ) >1 sincezj uj > 2(21/3— 1) accord-
ing to Lemma 3.7.

Whenm = 2, there are at most three of the processors, each of which has a total uti-
lization less than 2(1/3— 1). Therefore, for all the processors @p€ (I), there are at most
three processors Who%jW(l.ﬁ) is less than 1 in the RM-BF schedule.

Now letL = nq + n, be defined similarly as in Section 3.3, except that they are for
processors ofyipe (Il). All the results derived in Section 3.3 are applicable to the set of
Type (Il) processors in the RM-BF schedule.

The upper bound of RM-BF can now be determined.

w=5 ", W(y) >(N-L-M)+ns (27°-1)/a

70

=N-n;-ny,+ n1(21/2—1)/ a-3

>N-2Ng[1 - (2¥°~1)/a] -n, - 3

Sincew < Ny /aandn, < 1, we have

N<Np[2a+1- 2(21/2—1)] /a + 4. Hence,

0P ar < [28a+1-2(2Y%-1)]/a=2.33 wherea = 202" >~ 1

The lower bound is proven by repeating the sargeraent as in Theorem 3.7 for
RM-BF. Therefore, 2.2838 Oy, ge- n

Note that even though RM-BF has the same worst case performance bound as RM-
FF, special cases exist where RM-BF performs better than RMukdFvice versa. For
example, for a set of four tasks with their utilizations given as follows, two processors are
needed by RM-BF while three processors are required by RM-FF to schedule it.

up = 2/5,uy, = 3/7 +¢,uz= (4-7¢) / (10 + &), andu, = 3/7 for arbitrarily smalt > 0.

We can also derive similar bounds for RM-BF with respect to the maximum allow-
able utilization of a task.

Theorem 3.10: Let N and Ny be the number of pcessors requéad by RM-BF and
the minimum number of gressors equired to feasibly schedule a given set of tasks,

1/ (1+c¢)

respectively. Itk = max _; ., {u} anda<?2 -1, then

DOROM_BF(G) <1l/[(c+ 1)(21/(2+c)

1/ (2+c)

-1],forc=0,1, 2,...
When c- o, [(c + 1)(2 -1)] - In2 ThenD:M_BF(a) < UIn2. The upper

bounds of RM-BF with regard tw are given in Table 3.1 for a few valuesiof

3.5. The Refinements of RM-FF and RM-BF

It is clear that ifa is small, RM-FF performs well. Howeveits performance
degrades rapidly whem > 0.4142. If we can find a better way to schedule the tasks with
large utilization, and use the RM-FF to schedule the tasks with small utilization, then the
overall performance of the combined algorithm will be improved.ané thus motivated

to develop a new allocation algorithm that is based on the well-known divide-and-conquer

71

strategy. It is called the Refined-Rate-Monotonic-First-Fit (RRM-FF).

RRM-FF divides the processors into two groups such that within each group there
is an infinite number of processors. It also divides the task set into two groups according to
their utilizations such that tasks within a group are assigned to the same group of proces-
sors. Let the processors in the first group (oPtheoup) be indexed &, P», ..., and pro-
cessors in the second group (or Geroup) be indexed a3, Q,, ..., with each one
initially in the idle state. A task; belongs to the first group if its utilization is no greater

1/3—1, otherwise it belongs to the second group. The tasks

than 21/3—1, e, u < 2
15, Ty, ..., T, Will be scheduled in that ordefo scheduler;, RRM-FF first identifies the

task group it belongs to and then finds the lesisth that task; , together with all the tasks

that have been assigned to proces$dor Qj), can be feasibly scheduled, and assign task

T, to Pj. The First-Fit heuristic is used to assign tasks in both groups.

RRM-FF can be described in a more algorithmic format in Figure 3.5. Note that the
grouping of tasks is “imaginary” and the algorithm is clearly on-line. The schedulability
condition used for scheduling tasks in the first group is the IFF condition. Since the algo-
rithm assumes that at most two tasks can be assigned to any processor in the second pro-
cessor group Q, the IFF schedulability test is reduced to just two comparison operations.
Therefore, the overall time complexity of the RRM-FF algorithm is &t{lihlogn) . The
worst case performance bound for RRM-FF is given in Theorem 3.11. Theorem 3.3 is key
to the proof of the upper bound.

Theorem 3.11: Let N and Iy be the number of pcessorsequired by RRM-FF
and the minimum number ofqmessors requad to feasibly schedule a given set of tasks,
respectively. Them;RM_ e < 1.96. The upper bounds of RRM-FF with regarcbtare

given in Table 3.2 for a few valuescof

Table 3.2: Worst Case Performance Bounds of RRM-FF undex

a >04142| <0.4142 <0.2598| <0.1892| <0.1487| <0.02

[1.96 1.92 1.76 1.68 1.63 1.47

00
rRrM- FE(Q)

72

Refined-Rate-Monotonic-First-Fit (RRM-FF) (Input: task sek; Output:m)

(1) Determine the group member of an incoming task as follows: T;
1/3 1/3

(2) If the task belongs to the f irst group (P), then assign it to a
processorinthe f irst processor group using the RM-FF algorithm.
(3) If the task belongs to the second group (Q), then assign it to a
processor in the second group as follows:

Use the First-Fit heuristic to f ind a processor Qi that contains
exactly one task and assign task T, to processor Qi if the two
tasks can be feasibly scheduled according to the following con-

dition:

min :=i; max :=J;
If (T o> T) Then {min :=j: max = i;};
If (|_Tmax/TminJ Cmin * Cmax = |_Tmax/TminJ Tmin) Or (|_Tmax/Tmin-|

Coin ¥ Cmax S Tmex) Then feasible := True

Elsefeasible := False

Otherwise, assign a task to an empty processor. Terminate when all
tasks in the group have been assigned.

(4) The total number of processors required is the sum of the total
number of processors used in both processor groups.

Figure 3.5: Algorithm RRM-FF

Proof: Let = = {1,,T,, ..., T,} be a set ofm tasks, with their utilizations being
Uy, U,, ..., U_. Then the total utilization of the task set is given??‘: 1 Y;- Suppose that
N =Np + Ng processors are used by RRM-FF to schedule the tagk waereNp andNg
are the number of processors allocated in processor Brang that in processor gro@Q
respectively Among theNg processors, let; be the number of processors assigned one
task anch, be the number of processors assigned two tasks.Ngem; + n,. For con-
venience, we led = Hzl/:”— 1H.
Among theNq processors, for the; processors to each of which one task is

assigned, we have by Theorem 3.3 that

73

1/
zi“;lui > n1/51+ 2™me >ny/2-1n2/ 4. (Eq.3.18)

For then, processors to each of which two tasks are assigned, it is apparent that

Zlni L (Ui +u;) > 2an, (Eq.3.19)
sincey; 1>aandy; o> a.
Sincey; < a, each of thé\p processors must be assigned at least three tasks, possibly
except the last processéiccording to Lemma 3.2, among all processors on each of which

at least three tasks are assigned, there are at most one processor whose utilization is no

greater than 311/4— 1). Then we have

T2 302 *~19(N, - 1) (Eq.3.20)
According to inequalities (3.18), (3.19), and (3.20), we have

Zimzlui = zinl:lui +Zin2=1(ui’1+ui’2) +ziNlei

>n./2-1n2 /4 +2an, +3527~19(N,—1) .

SinceNg 2 Zm: 1Y andN =ny +ny + Np, it is immediate that
No=2aN - In2 / 4- 352"~ 17 - (2a- 0.5,

Since any two of the tasks that are assigned to;theocessors cannot be scheduled

on a single processor, we ha\g= n;.

174

ThenNy = 2aN - In2 / 4- 302Y ~ 17 - (2a- 0.5),

> 2aN- In2 / 4- 302"~ 17 - (2a - 0.5\,
N 2a+05 n2 . ,0U.1/4 1
— < — +32° -1 3.
NS 2a Ua *°C aN, (Eq-3.21)

(o]

Hence,Ugpme e < 1.96.

Fora < a, by aguments similar to the above one and the one in the proof of Theo-
rem 3.8, we obtain the rest of the results that are listed in Table 3.2. |

At this point, it is interesting to note that although we chod%/es(— 1) as value

used to divide a task set into two groups, it is in part for convenience of proof and presen-

74

/(3— 1 21,/2— 1) cando. In other words, if we

tation. In fact, any value in the range af
divide a task set into groups by choosing any value betv@alé%{ 1) and Ql/z— 1), the
algorithm RRM-FF still has the same worst case upper bouth®6f This claim can be
readily proven.

Leta be the maximum allowable utilization of a task, besmax (C,/T;) . Then
we can prove, similar to what we have done in Section 3.3 thatavisesmall, the worst
case performance of RM-BF can be significantly improved, as stated in Theorem 3.8.
Based on similar observation, we can modify RM-BF to develop a new algorithm called
Refined-Rate-Monotonic-Best-Fit (RRM-BF) to cope with situations whasdarge.

RRM-BF works as follows: It divides the processors into two groups such that
within each group there is an infinite number of processors. It also divides the task set into
two groups in just the same manner as RRM-FF does. Also, RRM-BF works the same way
as RRM-FF does, except that the Best-Fit heuristic is used to assign tasks in both groups
for RRM-BF. The following result can be proven similar to that of Theorem 3.11.

Theorem 3.12Let N and N be the number of pcessors requed by RRM-BF and
the minimum number of gressors equired to feasibly schedule a given set of tasks,
respectively. TheﬂﬂgRM_ & < 1.96 The upper bounds of RRM-BF with regaraitare

given in Table 3.2 for a few valuescof

3.6. Period-Oriented Heuristic Algorithms

As we have seen, the performance of a multiprocessor scheduling algorithm
depends not only upon the allocation scheme, but also upon the schedulability condition
used for each process@®he schedulability conditions that we have used in various sched-
uling algorithms so far are oriented towards utilization, i.e., the relative values of task uti-
lizations are taken into account. The performance of the algorithms is therefore limited
because they fail to consider the relative values of task periods.

Though task periods have been assumed to be arbitrary in those utilization-oriented

75

schedulability conditions, they are in fact derived under the condition that the ratio between
any two task periods is no more than 2. The task sets that are given in showing the lower
bounds for the algorithms might require few processors to execute them if their periods are
taken into consideration as well. One of the schedulability conditions that explicitly takes
into account the periods of tasks, besides the necessary &oéstutondition, is the PO
condition present in Section 2.3.

Next we will develop three scheduling algorithms that are based on the PO condi-
tion. The first two algorithms, RMST and RM{irst order the tasks according to their
periods and then schedule them. Accordingly they drinefalgorithms. The third one,
RMGT-M, schedules tasks without assuming any knowledge about the incoming tasks, and
hence it is a on-line algorithm.

One of the salient features of these three algorithms is that their performance
increases as, the maximum allowable utilization of a task, decreases. Though it may also
be true that the worst case performance of other algorithms increaseeazases, the
increase in the performance of these three algorithms is very rapid.

It is apparent that in the PO condition, the utilization bound increas¢s as
decreaseq is defined as the largest difference of the V values between any two tasks and
the V value of a task is defined ¥s= log, T, — LlongiJ . In the PO condition, % In2
- 1 asp - 0. This suggests that if we assign the tasks having almost the same V values
together on a processtinen the total utilization of a processor can be increased. Therefore,
a natural way to schedule a set of tasks is first to sort tasks according to the order of increas-
ing or decreasing V value and then schedule them in the new order.

The first algorithm is thus developed and it is called the Rate-Monotonic-Small-
Task (RMST) because it favors task sets that have smBIMST assigns tasks to proces-
sors in almost the same manner as the Next-Fit bin-packing heuristic. The algorithm is
described in Figure 3.6.

Note thatU denotes the total utilization of the tasks that have been assigned to

76

Rate-Monotonic-Small-Task (RMST)(Input: task sek; Output:m)

(1) Sort the task set such that 0 <Vys..gV < 1
2i=1m:=1; Sm = Vi ;
(3) Assign task T, to processor Pm if this task together with the

tasks that have already been assigned Pm to can be feasibly

scheduled on Paccording to the following condition:
U,+ U < max{Iin21-BIn2} ,where B= V,- S,
Ifnot, assigntask ~ to T, addm.fm+1, = . S V.

m |
(4) Ifi<n, theni:=i+ 1 and go to (3) else stop.

Figure 3.6: Algorithm RMST

processoP_ and,

i denotes the utilization of tqsk

Theorem 3.13: Let N and N be the number of pcessors required by RMST and

the minimum number of @ressors equired to feasibly schedule a given set of tasks,

N<2Ng+1+In2. (Eq.3.22)
If o <1/2, then
N 1 0 In2 01
— < ——+ 1+ — . Eq.3.2
Ny 1-a O " 1-alN, (Fa.3.23)

Proof: In the completed RMST schedule, t?tl, Tl be thesj tasks that
’ ! |
are assigned to a proces@panduj :ZE: 1Yk fo =1, ..., N. Furthermore, Iet\/j,i
— N .
be the V value of taskrj,i and Bj = VJ. 11T Vj, 1- Then ZJ _ 1Bj < 1. According to

RMST, we have
S
S = iUik*Usgg > max{n21-Bn2} 2 1-BIn2 (Eq.3.24)

forj=1,...,N-1.

SinceU,, , 2 u;,, ,,we have

U+U,; 21-pin2 (Eq.3.25)

j+1
from (3.24), wher¢ =1,..., N- 1.

Summing up th&l — 1 inequalities in (3.25) yields

77

N N-1
szzluj -U;-Uy=2(N-1)-1In2 ijlBj >2(N-1)-1In2
sincezj'\':_l1 B, < ZJN: Bi=1.
In other words,
22}.“:1uj > (N=1) +U;+Uy-In2=N-1-In2.
SinceN, 2 ZN: WY, :ZJ.”: 1Y » we havbl < 2Ng + 1 + In2.
Uj +a > 1—len2 (Eq.3.26)
from (3.24), wherg¢=1,..., N- 1.
Summing up th&l — 1 inequalities in (3.26) yields
N N-1
Z.:luj +(N-2a>(N-1)-1In2 21.:1[31. >(N-1)-1In2
- N-1 N
smcezjzlﬁjszj:lﬁjsl :

In other words,

sz: Uy —a>N(@-a)-1-In2 (Eq.3.27)
1 N 0 In2 C
N<m j=1Uj+D1+m[(Eq.3.28)

SinceNo2 57 u, andZ!\l U =5/.,y .wehave

Next we prove that the bounds given about are in fact tight.

Theorem 3.14: Ogy,67= 2 Opyst(®) = L1 fora= max (C/T) <1/2.

l1-a
Proof: SinceN < 2Ny + 1 +In2, it is immediate tha[ﬂ::,vlsT < 2.
: N 1 O In2 01
—<—— + 7l + —= = /T) <
Since N, T—a 7t 1—orDN_o fora irrlzjll),(wéCI/Tl) 1/2, we have

® 1
< -
Oeust(@) < 1o
To prove that the above bounds are tight, we need only to construct task sets that
require the upper-bounded numbers of processors when they are scheduled by RMST.
Let n = 4k wherek is a positive integer amgdbe an arbitrarily small number such

that 0 <e << 1. Furthermore, defin@> 0 such tha12r15 <1+

78

Then for the first bound, the setrofasks> = {1,, T,, ..., T} is constructed as fol-
lows:
1= (C,T) =(1/2,2°)fori =3 andj=0,1,..., &~ 1;
1. =(C,T) =€ 2°)fori=3+1,j=0,1,..., k- 1.
SinceV, , ; =V, =9, the tasks are in the order of increasing V value.
We first claim that R processors are required to schedule the task set by RMST.
According to the schedulability condition used by RMST,
2/2 -t 2 V2 e V2 4.1 osn2=1-pin2,

25 ,(2+1Dd T ,(2+2)3 nd . .nd nd
where=2dandj =0, 1,...... , k—1.

2 2 2

Hence, taskdyj + 1 andzj are assigned to a procesdorj =0,1,...,2k—-1,in
the completed RMST schedule. Then a total numbek pf&essors is required by RMST

We next claim thak + 1 processors are needed to schedule the same task set in the
optimal schedule.

Since 1/2 +1/2 = ¥ 2'° fori = Z andj =0,1, ..., Z& -1, any two of thesektasks
can be scheduled on a proces¥et any three of these tasks cannot be scheduled on a pro-
cessor sincd/2 +1/2 + 12 >1+1n>1+g>2"™. Therefore, exactlk processors are
needed to schedule thedetdsks. For the othek2asks witht, =(C,T;) =¢§, 2i5) for
i=3+1,j=0,1,..., k-1, ande > 0, one processor is needed to schedule themrsnce
<<1<2"°.

Let N andNg be the number of processors required by RMST and the minimum
number of processors required to schedule this task set, respedthertiN = 2k andN,
=k+ 1. Hencelgy,s1 = 2.

For the second bound, task sets can be similarly constructed to prove that the upper
bounded number of processors is required by RMST in each case. Hence we can conclude

that

1

Urust(@) =75 .

Next we present an improved version of RMST. Since RMST favors task sets with

79

small task utilization, its performance degrades as the maximum allowable utilization of a
task increases. In order to obtain better performance, we modify RMST in such a way that
tasks with lage utilizations are scheduled togeth€&he new algorithm is called Rate-

Monotonic-General-Task (RMGT). It is given in Figure 3.7.

Rate-Monotonic-General-Task (RMGT) (Input: task sek; Output:m)

(1) Partition the task set 2 into two groups:
O, = {Ti| (u; < 1/3.)'} and OF {1y >1/3}
Processors are also partitioned into two groups such that tasks
in a group must be assigned to processors in a group.

(2) Assigntasksinthe f irstgroup, 0 1, toprocessors using the RMST
algorithm.
(3) Assign tasks in the second group, 0 o, to processors as follows:
Use the First-Fit heuristic to f ind a processor Pi that contains
exactly one task and assign task T, to processor Pi if the two
tasks can be feasibly scheduled according to the following con-
dition:

min :=i; max = j;
If (T >) Then {min :=j: max := i;};
If (|_Tmax/TminJ Cmin * Cmax = |_Tmax/TminJ Tmin) Or (I_Tmax/Tmin-I

Coin * Cmax S Tmax) Then feasible := True

Else feasible := False

Otherwise, assign a task to an empty processor. Terminate when all
tasks in the group have been assigned

Figure 3.7: Algorithm RMGT

The reason thdl/3 is chosen in dividing the task set will become clear after the

proof of the following theorem is presented.

00

Theorem 3.15: DRMGT =7/4

Proof. Let = = {1,,T,,...,T,,} be a set ofm tasks with their utilizations
Uy, U,, ..., U_. Then the total utilization of the task set is givenE}'= Y NLandN,
be the number of processors required by RMGT and the minimum number of processors
required to schedul, respectively Suppose thall = N; + N, processors are used by

RMGT to schedule the task setwhereN; andN, are the numbers of processors allocated

80

in the first processor group and the second processor,gesgectively Among theN,
processors, lat; be the number of processors assigned one task,avelthe number of
processors assigned two tasks. TNerF ny +no.

In the first processor group, the following holds from (3.28) in Theorem 3.14

1 N, 0 In2 0O

wherea = ma}Lx (C/T) .
I = n

.....

Sincea = 1/3 in the first task group, it follows from (3.29) that

2 2 N,
§+ In2+§N1< ijluj (Eq.3.30)

In the second processor group, for theprocessors to each of which one task is

assigned,

zi”;lui > nl/E1+ 2 1% >ny/2-1n2 /4. (Eq.3.31)

For then, processors to each of which two tasks are assigned, we have

z,nzz 1 (ui, 1t uiyz) > (2n,) /3 (Eq.3.32)
sincey; 1> 1/3 andy; »> 1/3.

Sincezinl:lui >n1/2—ln2/4,zinz=1(ui’1+ui’2) > (2n2)/3,andziNi1u >
2

2
~+ + =
3 In2 3N , we have

m _ n n N
Z|_1u| _Zilzlui +Zi2=1(ui,1+ui,2) +Zii1U
>n/2-1n2/4+(2n,)/3 +§+In2+§Nl.
SinceNg > Zm: LU andN =ng +n, + Ny, it is immediate that
2N, 2 3In2 M

No>5 + 2+
033" 74 "6

Since any two of the tasks that are assigned tiojtheocessors cannot be scheduled

on a single processor, we haNig=n;

ny N
ThenNo @I+2+3In2__ 2N 2+3In2__

3 3 4 6_33 4 6

81

3In21 (Eq.3.33)
0

N _7 O
— < - - =
Ny~ 4 TN,

o]

< 7/4.

Therefore] RMGT =

In order to show that the bound as given above is tight, we construct the following
task set such th&t/ Ny = 7/4.
For any positive integean, the task set consists b8m tasks. V& select two sif

ciently small positive numberandd such thad << 1/(6m) and

1, 1 2.-2 3
52 +é_§2 S6S§8|n2 (Eq.3.34)

We label the tasks a | fori=1,2,...,mandj =1, 2,..., 13. The order of the
tasks that are given is not important, since the tasks will be sorted according to their V val-
ues.

The tasks are given by

V.,
Cj=u;Ti T =02",0>0,
12i +j) € 1<j<12
i (. 2 . J , and
) (12i +11) € i =13
DZI./2 j =258 11
u; =013 j=1610

1/6-5 j=347912 1:

For RMGT to schedule the task set, it divides it into two task groups:

0, = {Ti,j|i =1,...mj=1,34679 10 12 1B
O,={t;[i=1...mj=258 1%

In the completed RMGT schedulangrocessors are required to schedule the tasks
in thel,, since no two tasks in the group can be scheduled on a proddssaan be ver-
ified by the necessary and sufficient condition.

For theld, task group, B1processors are required to schedule by RMIBE pro-

cessor assignment is given by

(T 0T aTiad {TelsTo {1l fori=1,2,...m

82

This can be verified by the schedulability condition given in the RMGT algorithm.

In the optimal schedule, a total ahrocessors is required. The processor assign-
ment is given by

(0T 2T AT aTsTed AT 2T et 0T {10t
fori =1, 2,..., m. This can be verified to be so by the necessary afidisaf condition.
This assignment is optimal since the total utilization (load) of the task set is given by
(4—-60) m > 4m - 1 sinced << 1/(am).

HenceN /Ny = 7/4.

Thereforegy,q7 = 7/4. -

It is clear thatl/3 is chosen in dividing the task set becamse1/3 satisfying the
relationshipl—a = 2.

In the following, we present an on-line version of the RMST algorithm described
earlier The idea is to divide the incoming tasks into classes such that the utilization of a

processor can be increased by lowering the valfiarothe schedulability condition:

U + u < max{In21-pBIn2} (Eq.3.35)

m i

We refer the new algorithm as Rate-Monotonic-GeneagkdM (RMGT-M). The
parameter in the algorithriv], denotes the number of classes a task set is divided into. The
processors are also divided ifbclasses such that tasks in #tle class are assigned to
processors in thieh class. The class membership of a task is determined by the following
expression:

m=| M (log, (T) —| log, (T) |) | +1.

Then for each processor the valugiats defined in (3.35) is bounded abovelby
M. For each class, the algorithm keeps one so-called current protieaswmw task from
classkis added to the task set, then the algorithm first attempts to assign the task to the cur-
rent processor in thidh class. If the task can be scheduled on the current processor accord-
ing to the above condition (3.35), then add the task to it. Otherwise, the task is assigned to

an empty processowhich in turn becomes the current proceslimte that an improve-

83

ment can be made here: instead of choosing the newly used processor as the current pro-
cessorwe can choose the one with a smaller utilization (load) between the newly used one
and the “current” processdsince this modification does not improve the worst case per-
formance (but improves average case performance), we will not consider it here. A com-

plete description of the algorithm is given in Figure 3.8.

Rate-Monotonic-General-Task-M(RMGT-M) (Input: task sek; Output:m)
@)m =] M(log, (T) —| log, (T) |) | +1.

(2) Assign task T, to the current processor Pm in the mth class if

this task together with the tasks that have been assigned to P
can be feasibly scheduled according to the condition:
Um + U < 1-(In2)/M

Ifnot, assign task T,to P, andlet P

processor.

m+1 becomes the current

Figure 3.8: Algorithm RMGT-M

Theorem 3.16: Let N and Iy be the number of pcessorsequired by RMGIV
and the minimum number ofgmessors requad to feasibly schedule a given set of tasks,
respectively. Then

N
0
N< T om—a M (Eq.3.36)

fa< (1-(In2)/M)/2;

Mo M Eq.3.37
ST (n2)/M (Eq.3.37)

N
ifa>(1-(In2)/M)/2.
Proof: According to the schedulability condition used in RMMTthe total utili-
zation of any busy processor except the current processors edceddis2) /M —a . In
other words,
i=1"i

z“ u=2(N-M)[1-(In2)/M—-a].

SinceNg > Zi“: LU;, we haveNg > (N-M) [1- (In2) /M —a].

84

Ifa< (1-(In2)/M) /2, we have (3.36). It > (1- (In2) /M) /2, we have

(3.37). |

o - 1

RMGT-M = 1 _ (In2) /M’

Proof: For RMGTFM to be used as an on-line algorithm, the utilization of a task can

Corollary 3.1: O

assume an arbitrary value in the range of zero and one since the characteristics of the

incoming tasks are unknown. Therefore, in the worst case,
2N,
e 4
1-(In2)/M
When No becomes la@e, the termM disappears. HenceDoFZMGT_NI <

1
1-(In2)/M"
From the derivation of the bounds we can see that the performance of RMGT-M is

N M

sensitive to the choice o, the number of classes in a task set. In practice, itfisisat
for M to assume a value in the range of [5, 100]. The worst case bounds improve for large
values oM. HoweverM also determines the number of current processors, which may not
be fully utilized. Next we consider the problem of optimally selecting the vallvesofch
that the worst case bounds are lowest.

Let us assume that the total load of the task set is knawfimd'the value oM that
gives the lowest worst case bound for the number of processors in (3.37), we fix the value
ofU= Z”: L Y; - Since we derive both (3.36) and (3.37) through replagfifg_ L Ui by N,
the inequalities hold when we uden the place oNg. Since both of the right hand sides
of (3.36) and (3.37) are convex functions in termMopfve solve them for the minimum

and we obtain

MU = /2UIn2+ In2 (Eq.3.38)
for the right hand side of (3.37), and

MO = —-——W (Eq.3.39)

for the right hand side of (3.36).
This suggests to us that if we choddél./U , we obtain

85

N 2M M
USviomz Ty - 2O (W) (Eq.3.40)
and
N MU 1
0S ToayMone M- T Fo (W () (Eq.3.41)
whenU - o .

Therefore, the lowest worst case bounds we can get for RMGT-M i2>f¢t -
aln2/M)/2and 1 /(1 - a) fora < (1 - aln2/M)/2.
SinceU - o andM O./U, M must also approach infinitfherefore, these bounds

may only be of theoretical interest.

3.7. Rate-Monotonic-First-Fit-Decreasing-Utilization

The algorithm RM-FFDU is based on the bin-packing heuristic of First-Fit-
Decreasing (FFD). It has been known that if a list of items is sorted in the order of non-
increasing size, then the performance of such bin-packing heuristics as First-Fit and Best-
Fit can be improved significantlpavari and Dhal§ FFDUF is an example of applying the
First-Fit heuristic to schedule a set of tasks sorted in the order of non-increasing utilization.
However their FFDUF only has a worst case bound of 2, in part because of the WC sched-
ulability condition used. Next, we will describe a new algorithm which is also based on the
FFD heuristic, but uses the UO condition for schedulability test on each proddssor
algorithm is called RM-FFDU and has a worst case bound of 5/3, the best in the literature
to date. RM-FFDU is given in Figure 3.9.

When the algorithm returnsy is the number of processors required by RM-FFDU
to schedule the task set kj is the number of tasks assigned on proce3site state the

upper bound in the following theorem.

o0 5

Theorem 3.17: O p_ pppu S 3

To prove Theorem 3.17, we need to introduce some notations.

Let x be the first item assigned to the last processor in the completed RM-FFDU

86

RM-First-Fit-Decreasing-Utilization (RM-FFDU) (Input: task sek; Output:m)

(1) Sort the task set in the order of non-increasing utilization.

() i:=1; m:=1; Ok -
(3)j:=1; While (u; > 2/, (u +1)g-D Dof:=j+1}
4) kj.-z kjl,' A+ U7 Assign task T toP ;¥
) If(j>m) Then{ m:=j 3}

(6)i:=i+1;

(7) If (i>n) Then{ Exit;} Else{Goto 3;}

Figure 3.9: Algorithm RM-FFDU

schedule. Ik<In2 - 3/5, then every busy processor is allocated a utilization at a level that

is at leastn2 — x = 3/5. ThenD:M_ FFDUS g . Ifx> 1/2, thenN = N,, whereN, is the

minimum number of processors required to schedule the taskaselN is the number of

processors required by RM-FFDU to schediile

1/ (c+1)

Lemma3.9: If 2 -1l<y< 2Y€_1 for c> 1 in the completed RM

FFDU schedule, then among allqoessors on each of which at least ¢ tasksaaisigned,

there are at most one pressor to which not all the first c taske assigned tasks each with

1 (c+1) _

a utilization greater thar2 1

Proof: This lemma is proven by contradiction.

Suppose that there are two such proces3oasndP; with i <j such that each of
them is assigned at leastasks. Furthermore, lef , andu, , be the task assigned to pro-

cessolP; and its utilization, respectivelyhen for processdét;, there exists at least one task

1/ (c+1) _

T; , with m< c having a utilizatioru, . <2 1.

i,m =
1/ (c+1)

For processoP;, since?2 -1l<ys< 2Y¢ _1forc>1 (y= U g by defini-

tion), all the tasks yet to be assigned after taskhave utilizations no greater than , .

Furthermore, at leasttasks can be assigned on procefstecausel. , < oMo 1.

i,1~—
1/ (c+1)

Since2 -1<y< 2Y°_1 for processoP; withi <j, T; . with ms< cmust

be assigned to procesd{rafter the taskjy 1 Is assigned to processgr This could only

happen when the first task assigned to procé%sannot be assigned to proced3psince

1/ (c+1)

i1

87

SinceU; +u, ; 2 c(21/°— 1), whereU; is the total utilization assigned to processor

Pi when processd?; was first assigned the tagkl, processoP; must have been assigned

1/ (c+1)

c or more tasks each with a utilization equal to or greatertl']hgw 2 —1.Thisis

a contradiction to the assumption that there exists at least orte tabkving a utilization

1/ (c+1)
Ui m <2

—1 with m< c on processadp;.

Therefore, the lemma must be true.]

Before we move on, let us obtain the upper bound (not tight) for some of the values
of x.

Lemma 3.10: For some values of ﬂ;M_ Fepu IS given as in Table 3.3.

Table 3.3: Performance of RM-FFDU for some values of x

¢ X2 Orm_erous | € X2 O pm_ eroUS
2 0.4142 2.4 5 0.1487 1.68
3| 0.2599 1.92 6 0.1245 1.63
4 | 0.1892 1.76 00 -0 VIn2

Proof: Sincex s the utilization of the first task on the last procesgercan assume,
without loss of generality, that the first task on the last processor is the last task in the task
set after sorting. Note that the tasks following the first task on the last processor do not
affect the number of processors used by RM-FFDU if they are included in the task set.
Therefore, we can further assume that the utilization of any other task in the task set is equal

to or larger tharx.

1/ (c+1)

For any value o€ such that 2 -1)<x< (Zl/c— 1), supposen = 1 tasks

are assigned to a proces8pwith a total utilization otJ;, forc =0, 1, 2,...

If n=c, thenU; = c(21/ (e+1)

~1).
If n<c, thenc =2 andx > n(21/n—1) -y; > C(21/C—1) -Up. U > (c -
1)2Y°-1).

In summaryevery processor has a utilization greater tlcanl()(zl/c— 1)forc=

88

2. Since the utilization of a processor cannot exceed one in the optimal schedule.

]

Oem—rrpu S V(c- 1)[(21/0— 1] for c > 1. A few values oﬂ]°R°M_ FEpu are given in
Table 3.3 for some values of [

In the RM-FFDU schedule, Iét; be the number of processors to each of which
tasks are assigned. TherF Z:‘: N wherex is the maximum number of tasks assigned
to a processoiThen the total number of tasks in the task set is givem:bii'(: JIN; . In
the optimal schedule, &, be the number of processors to each of whitdsks are
assigned. The minimum number of processors require,is= Z:‘: M andn =
ZiK: 1iMi. We are trying to find the maximum ﬁf;M_ repy for any value ok. Let us
definey, to be the utilization of the first task assigned to a procdgsdrhen it is imme-
diate for RM-FFDU thay, > Y, if i <j. Where there is not confusion, we simply yge
denote the utilization of the first task assigned to a processor.

For those processors to each of whidhsks are assigned, their minimum total uti-
lization can be determined by the following method: S'meeQ/Hi”: 1 (1+u) —1,the
minimum ofU = ZI”Z Y is achieved at) = n{ [2/ (1+X)] l/”—l} when u; = u, =
Lo=uo=[2/(1+%] 7" -1,

In the subsequent lemmas, we will prove téf;tM_ Fepu < S/3with regard tax.

We divide the range of values can assume into several intervals and prove that
D:M_ repu < 5/3 for each interval:

x O(U/3, /2], x O(1/4, 1/3], x (W5, 1/4], x02" * =1, 15], xOwe, 2% *~1], x

0(s(2"° = 1) - 3/5, 6], andx 0(6(2" ® = 1) - 3/5,5(2" >~ 1) - 3/5].

The final proof of Theorem 3.17 appears after the lemmas.

00

Lemma 3.11: If x [(1/3, 1/2], then RM— FEDU < 3/2.

Proof: Sincex > 1/3, a processor cannot be assigned more than 2 tasks<.8.,
Each processor is assigned one or two tasks in either the RM-FFDU schedule or the optimal
schedule.

Let n be the total number of tasks in a task set. The optimal number of processors

89

required isN, ZZiZ: M

2 <2
Zi _Njandn= Zi _ 1N
Then the ratid] 3y, _cepy N/N, is maximized whenakf =0ahd n/ =

. Furthermore,= zlz: 1iMi. In the RM-FFDU scheduld\ =

2. The maximum value is achieved@k,,_rrpy = 3/2. n

Lemma 3.12: If x 0(1/4, 1/3], thenDRM_ FEDU < 3/2.

Proof: Sincex > 1/4, a processor can be assigned no more than 3 tasksF.8.,
In the RM-FFDU schedule, let us consider all the processors to each of which one task is
assigned. Let u be the utilization of the only task assigned to a prodédssau > (1 - 1/
3)/ (1 +1/3) = 12. In other words, among all the processors to each of which one task is
assigned, the utilization of the task is greater tianTherefore, if there afd, such pro-
cessors in the RM-FFDU schedule, then at légsprocessors are needed in the optimal
schedule.

For 0%

av_repu = N/ Ny, supposeN; = N, =0, thenO 3, rrpy = 1 since a

processor is assigned at most three task®\, If= N; = 0, then the maximum value
D°R°M_ rrpu Can achieve is 3/2 since at most three tasks can be assigned on one processor
If N, = Ny =0, thend 3y, rrpy = 1.

If N, =0, then the maximum cﬁ:M_ repu IS 3/2 since at most three tasks can be
assigned on one processiorN, = 0, then for theN, processors in the optimal schedule,
each can only be assigned at most two tasks. Therefore the maxinmﬁhc_)fFFDU is
achieved whemN, = 3N, such thatlq, rrpy < 4/3. 1fN; =0, 05y, repy < 3/2 for
similar reason.

If N, #0in the RM-FFDU schedule, theE:M_FFDU < 3/2. Suppose that in the
best case where each of tiigprocessors on each of which a task with a utilization greater
than 12 is assigned is assigned two tasks tatalhen the minimum number of processors
required (in the optimal schedule) is at lebigt + (2N, + 3N; — N,)/3. Therefore

[oe]

Orm—rrou SONp + Ny +Ng) /(N + (N, + By —N,)/3)< 3/2. u

90

00

Lemma 3.13: If x 0(1/5, 1/4], then RM— FEDU < 3/2.

Proof: Sincex > 1/5, a processor is assigned at most four tasksg =e4,

For those processors to each of which one task is assigned, the utilization of the task
is greater than (% 1/4) / (1+ 1/4) = 3/5.

For those processors to each of which two tasks are assigned, the minimpym of
+u, is achieved at 2[2/ (1+x) -1 Jwhen, &, &2/ (1+x)-1 .Then us
= /8/5-1 = 0.2649, and) = 0.529 forx = 1/4. Note that fox > 1/4,U > 0.529. Wo
more tasks can be assigned on these processors in the optimal schedule.

For those processors to each of which three or four tasks are assigned, their mini-
mum total utilization is determined @t> 3x > 0.6, whenu, =1/5.

In the following, we define a function that maps the utilization of a task to a value
that is in the range of 0 arid as given in @ble 3.4. & call that value the weight of the
task, and the sum of the weights of the tasks assigned to a processor the weight of the pro-
cessor The weighting function is designed in such a way that for every processor in the
RM-FFDU schedule, its weight is equal to or greater thakt the meantime, the weight
of a processor in the optimal schedule is no greater than B/8t3t\tlaim that for any pro-
cessolP in the completed RM-FFDU schedule, the total weight of procé&ssoequal to
or greater thaad, i.e.,W(P)= Z:(: lW(u) =1, wherekis the number of tasks assigned
to processoP.

Table 3.4: Weighting Function for x J(1/5, 1/4]

W(u) = ull
0 (0, 1/5]
1/3 (1/5,./8/5-1]
1/2 (J8/5-12"°-1]
2/3 @7%_1,3/5]
1 (3/5, 1]

In the completed RM-FFDU schedule, the utilization of the first task assigned on

91

any processor must be equal to or greater thaa.,y > x. Let us consider a processor to
which is first assigned a task with a utilizationyof

Case 1: 15 <y< ,/8/5—1. Then the processor must be assigned at least three tasks
each with a utilization greater than 1/5. Therefov¢P)= 3+1/3 = 1.

Case 2./8/5-1 =< 2Y2_1. Then the processor must be assigned at least two
tasks. Furthermore, except for possibly one processor by Lemma 3.9, each of the first two
tasks must have a utilization greater thA8y 5— 1 . ThereW ()= 1.

Case 327%-1 g < 3/5. Then the processor must be assigned at least two tasks.
Since the second task must be a task with a utilization greatet/thame have W(P> 1.

Case 4: 3/5 y<1. Then W(P)= 1 by definition.

We then claim that for any proces$bin the optimal schedule, W(R)3/2.

Let us assume that a processor in the optimal schedule is agsitasks with their
utilizations asu; 2u, > 2u_ .

Case lu, <./8/5-1. Then at most four tasks each with a utilization greater than
1/5 can be assigned on it. Therefore, W{M)3.

Case II:./8/5-1 < u, < 2% 1 and./8/5-1 < U,. Then at most one more
task can be assigned to the processar, If J8¢5—-1 ,then W(P)=1/2+1/2 + 1/3 =4/
3.1fu, > /8/5-1, then W(P) =L/2 + 1/2 + 12 = 3/2. If /8/5—-1 < u, <2"/*~1 and
u, < ,/8/5—-1, then at most two more tasks are assigned to the pracBssrefore, W(P)
=1/2+1/3+1/3+1/3=3/2.

Case lII:2Y% -1 <u; <3/5andu, > 22 _ 1. Then no more task with a utiliza-
tion greater than 1/5 can be assigned to the processor. Therefore, W(P) = 2/3 + 2/3 = 4/3.

Case IV:2" %1 <u; <3/5 and./8/5-1 < u, < 22 _1. Then no more task
with a utilization greater that'5 can be assigned to the proces$berefore, W(P) = 2/3
+1/2=7/6. 112" %~1 <u; <3/5and, </8/5-1, then at most one more task with a
utilization greater than/a can be assigned to the processberefore, W(P) = 2/3 /3 +

1/3 = 4/3.

92

Case V: 3/5 «u; <1Then at most one more task with a utilization greater than
5 can be assigned to the same processor. Furtheruiore21/2< 1 . Ther WKRY
2=3/2.

Let N andN, be number of processors required by RM-FFDU and the minimum
number of processors required to schedule a given akh tasks, respectively. Then the
total weight of the task set is given EyI”: 1W(u) . Since, except for one processti(P)
> 1 for every processor in the RM-FFDU schedule, t%’h: 1W(u) =2N-1. Since W(P)

< 3/2 for every processor in the optimal scheduld,/2 > ZI”: 1W(q) . Therefore,

o]

Orme repu < 3/2. |
Lemma 3.14: 1f x 0(2"*~ 1, 1/5], thenD 2y, _ crpy < 5/3.
Proof: Sincex> 2" -1 = 0.1892, a processor is assigned at most five tasks, i.e.,
K=5.

For those processors to each of which one task is assigned, the utilization of each
task is greater than 11/5) / (1+ 1/5) = 2/3.

For the processor to which two tasks are assigned, the minimum #fu,, is
achieved at) = 2[./2/ (1+x) —1]whenu, =u, =2/ (1+x) -1 .Theru;, =u, =
J5/3-1=0.29, andJ = 2(./5/3—-1) = 0.58 forx = 1/5. Note that fox < 1/5,U > 0.58.

For a processor to which three tasks are assigned, their minimum utilization is
achieved atl = 3{ [2/ (1+x)] " °~1}when u, = [2/ (1+x)] "~ 1. We want to find
thex such thatxx [2/ (1+X)] V3_q. Solving the inequalitx < [2/ (1+X)] 3 4
yieldsx < 2% _1.1n other words, for every processor to which three tasks are assigned
in the completed RMFFDU schedule, their total utilization is greater thaﬁléf—l) =
0.5676.

In the following, we define a function that maps the utilization of a task to a value
that is in the range of O ardgas given by able 3.5. The weighting function is designed in
such a way that for every processor in the RM-FFDU schedule, its weight is equal to or

greater tharl. At the meantime, the weight of a processor in the optimal schedule is no

93

greater than 5/3.
Table 3.5: Weighting Function for xD(21/4— 1,1/59]

W(u) = uld
0 0,27%-1]
1/3 7" -1,./5/3-1]
1/2 (J5/3-12"°-1]
2/3 @7%_1,2/3]
1 (2/3, 1]

We first claim that for every processerin the completed RM-FFDU schedule,
W(P)= 1.

Sincex D(21/4— 1, 1/5], the utilization of the first task assigned on any processor
in the completed RM-FFDU schedule must be equal to or greatex,thany > x. Let us
consider a processor to which is first assigned a task with a utilizatyon of

Case 1:27%-1 < y < ./6/3-1. Then the processor must be assigned at least
three tasks. Therefore, W(BQL/3 + 1/3 + 1/3 = 1.

Case 2./56/3-1 < 2Y2_1. Then the processor must be assigned at least two
tasks. Furthermore, except for one processor by Lemma 3.9, each of the first two tasks must
have a utilization greater thaf6/3—1 . Therefore, W{R)2 + 1/2 = 1.

Case 32%-1 < ¥ 2/3. Then the processor must be assigned at least two tasks.
Since the second task must be a task with a utilization greatezjt/hzan 1, we have W(P)
>2/3+1/3=1.

Case 4: 2/3 < ¥ 1, W(P) = 1 by definition.

We then claim that for any processor in the optimal sched({(e)< 5/3.

Let us assume that a processor in the optimal schedule is agsitasks with their
utilizations asu; 2 u, > 2u., .

Case |y, </5/3—-1. Then at most five tasks each with a utilization greater than

2Y*_1 can be assigned on a processor. Therefore, ¥WHR.

94

Case Il:./5/3-1 <u, <2¥?_1 and/5/3-1 U, . Then at most two more
tasks can be assigned to the procesbar < J5/3-1, then W(Px 1/2 + 1/2 + 1/3 + 1/
3=5/3.Ifu, > /5/3—1, then W(P) /2 + /2 +1/2 = 3/2. If /5/3-1 <u, <2"?-1
andu, < A/5/3-1, then at most two more tasks each with a utilization less.fba3 — 1
can be assigned to the processor. Therefore, W{P) + 1/3 + 1/3 + 1/3 = 3/2.

Case lII:2Y% -1 <u, <2/3 andu, > 22 _ 1. Then no more task with a utiliza-
tion greater thae”’*~1 can be assigned to the processor. Therefores W@ 2/3 =
4/3.

If 2% 1< u, <2/3and./5/3-1 <u, <"?_1 | then at most one task with
a utilization greater tha?”’*~1 and less tHah°—1 can be assigned to the processor.
Therefore, W(P) = 2/3 + 1/2 + 1/2= 5/3.

If 2% 1< u, <2/3 andu, </56/3—-1 , then at most two more task with a uti-
lization greater thag™*~1 can be assigned to the proces3berefore, W(Px 2/3 + 1/
3+1/3+1/3=5/3.

Case IV 2/3 <u; < 1. Then at most one more task with a utilization greater than
2Y%_1 and lesstha®”’*—1 can be assigned to the same processor. Furthegmore, <
2Y%_1. Then W(PK 1 + 1/2 = 3/2.

Let N andN, be number of processors required by RM-FFDU and the minimum
number of processors required to schedule a given akh tasks, respectively. Then the
total weight of the task set is given %”: L W(u) . Since W(P} 1 for every processor
in the RM-FFDU schedule, theii”: 1W(u) =N- 1. Since W(P) 5/3 for every pro-

cessor in the optimal scheduléN5 yii”: (W(u) . ThereforeUpy_pppy <5/3. =

> <5/3.

Lemma 3.15: If x C(1/6, 2 *~ 1], thenO 5y, _ crpy <

Proof: Sincex > 1/6, a processor is assigned at most five taskskize5.

For those processors to each of which one task is assigned, the utilization of each
task is greater than H(21/4— 1]/ @A+ o4 1)= 2¥4_1=0.68.

For the processor to which two tasks are assigned, the minimum efu,, is

95

achieved at) = 2[/2/ (1+x) —1]whenu, =u, =2/ (1+x) -1 .Theru, =u, =
2¥8_120.297, andJ = 2(2* %~ 1) = 0.594 forx = 2/ *~1 = 0.1892. Note that fox
<2¥*-1,U>0594.

For a processor to which three tasks are assigned, their minimum utilization is
achieved at) = 3{[2/ (1+Xx)] V3_ 1}whenu, =[2/ (1+x)] Y3 _1.We want to find
thex such that x [2/ (1+x)] " °=1. Solving the inequalitx < [2/ (1+x)] %=1
yieldsx < 2Y4_1.In other words, for every processor to which three tasks are assigned
in the completed RM-FFDU schedule, their total utilization is greater tf&lr/l%(1) =
0.5676.

Fory < o4 1, each processor must be assigned at least four tasks each with a
utilization less thare" * - 1

In the following, we define a function that maps the utilization of a task to a value
that is in the range of 0 arddas given by dble 3.5. The weighting function is designed in
such a way that for every processor in the RM-FFDU schedule, its weight is equal to or
greater tharl. At the meantime, the weight of a processor in the optimal schedule is no
greater than 5/3.

We first claim that for every processor P in the completed RM-FFDU schedule,

Table 3.6: Weighting Function for x J(1/6, . 1]

W(u) = uld
0 (0, 1/6]
1/3 We, 27 °_1]
1/2 @¥°%_12"%_1]
2/3 @/%-1,2¥"_1]
1 ¥ -1, 1]

W(P)= 1.
Sincex [1(1/6, o4 1], the utilization of the first task assigned on any processor

in the completed RM-FFDU schedule must be equal to or greatex,thany > x. Let us

96

consider a processor to which is first assigned a task with a utilization of y.

Casel:1/6 9y < 2Y4_1. Then the processor must be assigned at least four tasks.
Therefore, W(P: 4 » 1/3 > 1.

case 227*_1 gy< 2¥8_1. Then the processor must be assigned at least three
tasks. Therefore, W(R)1/3 + 1/3 + 1/3 = 1.

Case 32%%_1 Y < 2Y2_1. Then the processor must be assigned at least two
tasks. Furthermore, except for one processor by Lemma 3.9, each of the first two tasks must
have a utilization greater thay ®-1 . Therefore, WAR)2 + 1/2 = 1.

Case 42V/°_1 Y < 2¥4_1. Then the processor must be assigned at least two
tasks. Since the second task must be a task with a utilization great@%/tﬁarl, we have
W(P)=2/3+1/3=1.

Case 52¥ -1 <y 1. Then W(P} 1 by definition.

We then claim that for any processor in the optimal schedule, ¥\§B)

Let us assume that a processor in the optimal schedule is agsitasks with their
utilizations asu; 2u, > 2u_ .

Case I: 1/6 <, ©2*®_1. Then at most four tasks each with a utilization greater
than1/6 and less tha2® ®— 1 can be assigned on a proces3berefore, W(Px 5+ 1/3
= 5/3.

Case 12¥%_1 <u, <Y?_1 ane¥®-1 €, . Then at most two more tasks
can be assigned to the procestou, < 2¥8_ 1,then W(Px1/2 +1/2+1/3+1/3=5/

3. 1fuy > 2%¥8_ 1, then no more task with a utilization greater théhcan be assigned to
the processor, and thus W)/2 + 1/2 + 1/2 = 3/2.

Case I:12%%_1 < u, < Zal | andu, < 2¥8_1. Then at most two more tasks
each with a utilization less th@y ®— 1 can be assigned to the proces$berefore, W(P)
<1/2+1/3+1/3+1/3=3/2.

Case Iv:2"%_1 <u, <¥4 andi, 2?_1 . Then at most one task with

a utilization greater thall6 and less thag™ *—1 can be assigned to the process$bere-

97

fore, W(P)< 2/3 + 2/3 + 1/4 < 5/3.

If 21/2—1 <u < 23/4—1 and 23/8—1 <u, <21/2—1, then at most one task
with a utilization greater that/é and less thag> *—1 can be assigned to the processor
Therefore, W(P¥ 2/3 + 1/2 + 1/3= 3/2.

If 2% 1< u, < 2¥*_1 and U, <2¥%_1 , then at most two more task with a
utilization greater thag@” *~1 can be assigned to the proces3berefore, W(Px 2/3 +
1/3 +1/3 +1/3 =5/3.

Case V2¥%_1 < u, <1 Then at most one more task with a utilization greater
than1/6 and less thag” ®~ 1 can be assigned to the same proce33wn W(Pk 1 + 1/

3 =4/3.

Let N andN, be number of processors required by RM-FFDU and the minimum
number of processors required to schedule a giveh akh tasks, respectively. Then the
total weight of the task set is given %”: L W(u) . Since W(P} 1 for every processor
in the RM-FFDU schedule, theii”: 1W(u) =N- 1. Since W(P) 5/3 for every pro-

> <53. m

cessor in the optimal scheduléN5 yii“: 1W(u) . Thereforedx_ rrpy <

1/5 00

Lemma 3.16: If x O(5(2™ 1) = 3/5, 1/6], thenU 5, _ rrpy < 5/3.

Proof: Since 521/5— 1) - 3/5=0.14349 > 17, a processor is assigned at most six
tasks, i.e.k = 6. For convenience, let us dendte 5(21/5— 1) - 3/5.

For those processors to each of which one task is assigned, the utilization of each
task is greater than 11/6) / (1+1/6) = 5/7= 0.71.

For the processor to which two tasks are assigned, the minimum #fu,, is
achieved at) = 2[./2/ (1+x) —1]whenu, =u, =2/ (1+x) -1 .Theru;, =u, =
J12/7-1 = 0.31, andU = 2(./12/ 7—1) = 0.62 forx = 1/6. Note that fox < 1/6, U >
0.62.

For a processor to which three tasks are assigned, their minimum utilization is
achieved all = 3{[2/ (1+X)] l/3—1}when u =[2/(1+x)] V3_q. Thenu; =u,
=u, = (1277 °-1=0.197, andJ = 3[(12/ 7) " °~ 1] = 0.59 forx = 1/6. Note that

98

for x <1/6, U > 0.59.

For a processor to which four tasks are assigned, their minimum utilization is
achieved at) = 4{ [2/ (1+x)] Y *~1}whenu, = [2/ (1+x)]"*~1. We want to find
xsuch thak< [2/ (1+x)] " *=1. Solving the inequality< [2/ (1+x)] %=1 yields
x< 2V/°_1 =0.1487. In other words, for every processor to which four tasks are assigned
in the completed RMFFDU schedule, their total utilization is greater théﬁlﬁs—l) =
0.595.

As having done so above, we define a function that maps the utilization of a task to
a value that is in the range of O and 1, as given by Table 3.5.

We first claim that for every procesd®rin the completed RM-FFDU schedule,
W(P)= 1.

Sincex D(5(21/5—1) - 3/5, 1/6], the utilization of the first task assigned on any
processor in the completed RM-FFDU schedule must be equal to or greaterithayn>
X. Let us consider a processor to which is first assigned a task with a utilization of y.

Table 3.7: Weighting Function for XD(5(21/5— 1) - 3/5, /6]

W(u) = uld
0 0,5]
1/4 G, (12777 °-1]
1/3 ((1277n"°-1,2"°-1]
3/8 @73_1,/12/7-1]
1/2 (J12/7-1,27°-1]
2/3 /%1, a7 -1]
3/4 (127 7n7°-1,5/7]
1 (5/7, 1]

Case 1y < (12/7) V3_q, Except for the last processtine processor must be
assigned at least four tasks each with a utilization less(than7) Y3 _1 but greater than

0. Therefore, W(Px 4+ 1/4 =1.

99

Case 2:(12/7) V3_1< y< o3 1, Except for one processor by Lemma 3.9,
the processor must be assigned at least three tasks each with a utilizatiom that
(1277 3-1 <u< 23 1. Therefore, W(PE 3+ 1/3 = 1.

Case 327°_1 <y < /12/7—1. Except for one processor by Lemma 3.9, the
processor must be assigned at least three tasks. Furthermore, each of the first two tasks must
have a utilization greater than® -1 . Therefore, WB)8 + 3/8 + 1/4 = 1.

Case 4,12/ 7—1 <y < 2% _1. Except for one processor by Lemma 3.9, the
processor must be assigned at least two tasks, each of which must have a utilization greater
than ,/12/ 7— 1 . Therefore we have W(BJL/2 + 1/2 = 1.

Case 527°-1 < y< (12/7) #/3_1 = 0.432. Since x1(d, 1/6], the processor
must be assigned at least two tasks each with a utilizakon< (12/7) 23 _1.Ifthe
utilization of the second task is greater th@?2/ 7) V3_1q ,then W@B + 1/3=1.If
the utilizationu, of the second task is equal to or less tiag/ 7) vs_ 1, then one more
task with a utilizatioruz J(, 1/6] must be assigned on the processor. This is because

2B+ [(1z7 9Y3-1]y {1+ [(12 0 ¥2-1} B-1=76-1= 16> ug

Then W(P2 2/3 + 1/4 + 1/4 > 1.

Case 6:(12/7) #3_1 <y < 5/7. Except for one processor by Lemma 3.9, the pro-
cessor must be assigned at least two tasks. The second task e must have a utilization greater
thand. Therefore we have W(R)3/4 + 1/4 = 1.

Case 7: 5/7 < ¢ 1. W(P)= 1 by definition.

We then claim that for any processor in the optimal schedule, \§B)

Let us assume that a procesBan the optimal schedule is assignadasks with
their utilizations asl; 2u,>...... 2uU_ =X

Case I3 <u; = (12/7) ”3_1. Then at most six tasks each with a utilization
greater thad (and < u,) can be assigned on a processor. Therefore, XWER).

Case ll: (12/7) V3_q <u; < 2Y3_1. There are several sub-cases to consider

If u, < (12/7) v3_ 1, then at most four more tasks each with a utilization greatebthan

100

can be assigned to the processor, me<,6. Then W(Px 1/3 + 5« 1/4 <5/3.

If u, > (12/7) Y3_1 and us < (12/7) 1/3—1, then at most three more tasks
each with a utilization greater thé&xcan be assigned to the processer,m< 6. Then
W(P)< 1/3 + 1/3 + 4+ 1/4 = 5/3.

If u; > (12/7) 3 4 andu, < (12/7) l/3—1, then at most one more task with
a utilization greater thad can be assigned to the processer,m< 5. This is because
3[(12/ 7)Y 3~1]+35>1. Then W(PX 3 1/3 + 2 « 1/4 < 5/3.

If u, > (12/7) V3 1 andug < (12/7) v3_ 1, then no more task with a utiliza-
tion greater thad can be assigned to the processer,m< 5. Then W(Pk 4+ 1/3 + 1/4
<5/3.1fug > (12/7)Y°~1, then W(Px 5 + 1/3 = 5/3.

Case II12Y°%-1 < u, < 412/ 7-1. There are several sub-cases to consltler
u, < (12/'7) 1/3—1, then at most four more tasks each with a utilization greaterdthan
(and less than cagl12/ 7) v3_ 1) be assigned to the process@., m< 6. Then W(Px
3/8+5+1/4<5/3.

If (12/7)1/3—1 <u, < 2Y3_1 and Ug < (12/7)1/3—1, then at most two
more tasks each with a utilization greater tharan be assigned to the processor, mes,

5. Then W(Pk 3/8 +1/3 + 314 <5/3. Ifu, < 2 °~1, (1277 ° -1 <u, < 2V° -1,
andu, < (12/7) vs_ 1, then at most one more task with a utilization greater dheam
be assigned to the processor, nes 5. Then W(Px 3/8 + 2+ 1/3 + 2+ 1/4 < 5/3. W, <
21/3—1, (127 7) V3_1< u, < 21/3—1, andug < (12/7) 1/3—1, then no more task
with a utilization greater thad can be assigned to the processer,m< 5. Then W(Px
3/8+3+1/3 +1/4<5/3.

f 23 1< u, and (12/'7) V3_q <ug < 21/3—1, then at most one more task
with a utilization greater thalcan be assigned to the processer,m< 4. Therefore W(P)
<243/8+13+14<5/3.1f27°~1< us, then at most more task with a utilization greater
thand and less thag"”’ ®~1 can be assigned to the processan £et, Therefore W(P)

< 3+3/8 +1/3 <5/3.

101

Case IV:.//12/7-1 <u, < 2% _1 There are several sub-cases to consltier,
< (12/7) V3_ 1, then at most three more tasks each with a utilization greated {had
less than car{12/ 7) Vs _ 1) be assigned to the process@.,m< 5, since./12/ 7—-1 +
56 > 1. Then W(P¥ 1/2 + 4« 1/4 < 5/3.

Y3_1 and Ug < (12/7)1/3—1, then at most two

if (1277Y°-1<u, <2
more tasks each with a utilization greater tharan be assigned to the processor, mes,
5, sincey/12/ 7—-1 +(12/7"°-1 +&>1. Then W(PX 1/2 + 1/3 + 3 + 1/4 < 5/3. If
u, < 2Y3_1 and (12/7) 3 4 <u, < o3 _ 1, then at most two more tasks each with
a utilization greater thad and less tharn(12/ 7) 3_1 canbe assigned to the processor
ie.,m<5. Then W(PK 1/2 + 2 +1/3 + 2 +1/4 = 5/3. Ifu, < 2/ °~1 and (127 7 ' °~1
<u, < o3 _ 1, then no more task with a utilization greater thaan be assigned to the
processor, i.,em< 4. Then W(Px 1/2 + 3« 1/3 < 5/3.

iF 2% 1< u, < J/12/7-1 andu, < (12/7) Y3_1, then at most two more
tasks each with a utilization greater tianan be assigned to the processer,m < 5.
Therefore W(P)< 1/2 + 3/8 + 3 «1/4 < 5/3. 1f 2Y/°~1 < u, < J12/7-1 and
(12/'7) V3_1< Ug < i 1, then at most one more task with a utilization greater than
dand less tharf12/ 7) Y3_1 canbe assigned to the processer,m< 4. Therefore W(P)
<12+3/8+1/3+ 14 <5/3. 112" -1 <u, < /12/7-1and (12/7) °=1 <Us <
Ug < 2V/3_ 1, then no more task with a utilization greater tbazan be assigned to the
processor, i.em< 4. Therefore W(P¥ 1/2 + 3/8 +1/3 + 3 < 5/3. Ifu, < ,/12/ 7—1 and
M3 _1<U3¢ J12/ 7-1, then at most one more task with a utilization greater dhan
and less thar{12/ 7) Y3_1 canbe assigned to the processer,m< 4. Therefore W(P)
<1/2+2+3/8+1/4<5/3.

If J12/7-1< u, < 2Y2_1 and us < (12/7) l/3—1, then at most one more
task with a utilization greater th@tan be assigned to the procesger,m< 4. Therefore
W(P)<2+1/2+2+1/4<5/3. 1§12/ 7-1 wu,<2”°-1and(12/7 -1 <u, <

21/3—1, then at most one more task with a utilization greater thamd less than

102

(12/7)1/3—1 can be assigned to the processa., m < 4, since 2(/12/ 7—-1) +
20(12/7Y°~1] > 1. Therefore W(Px 2« 1/2 + 1/3 + 14 < 5/3. If /12/ 7-1 < u, <
2Y%_1 and2"3-1 <u, < 12/ 7—1, then no more task with a utilization greater than
5 can be assigned to the processer,m < 3, since 2(/12/ 7—-1) + 2% -1 + 5> 1.
Therefore W(PX 2 » 1/2 + 3/8 < 5/3. If/12/ 7-1 <uy S u, < 2Y2_1, then no more
task with a utilization greater thancan be assigned to the processer,m< 3, since
3(/12/ 7-1) +& > 1. Therefore W(P¥ 3+ 1/2 < 5/3.

Case V:2/?_1 <u, < (12/'7) 2’3 _ 1. There are several sub-cases to consider.

If u, < (12/7) V3_q , then at most three more tasks each with a utilization greater
thand can be assigned to the processor,mes,5. Therefore W(Px 2/3 + 4 « 1/4 = 5/3.

Y3_1 and Ug < (12/7)1/3—1, then at most one

If (1277Y°-1 <u, <2
more task with a utilization greater thanan be assigned to the processer,m< 4, since
2Y?_1+ (12/7)"°-1 + 35> 1. Then W(P)< 2/3 +1/3 + 2+ 1/4 < 5/3. Ifu, <
2Y3_1 and (12/7) V3_1< Ug < o3 _ 1, then at most one more task with a utilization
greater tha® and less thar(12/ 7) Y3_1 can be assigned to the processer,m< 4,
since2”’ -1 +3[12/ 7Y% -1 1> 1. Then W(R 2/3 + 2+ 1/3 + 1/4 < 5/3.

if 2% 1< u, < 4/12/7-1 andu, < (1277 Y%~1, then at most one more
task with a utilization greater th@tan be assigned to the procesger,m< 4. Therefore
W(P)< 2/3 +3/8 +24/4<5/3. 112" °~1 <u, < J12/7-1 and (1277 ' °~1 <u,
< 21/3—1, then no more task with a utilization greater tharan be assigned to the pro-
cessari.e., m < 3. Therefore W(Pk 2/3 + 3/8 +1/3 < 5/3. 1f 2/°—~1 < U3 < u,
<./12/ 7-1, then no more task with a utilization greater thamd can be assigned to the
processor, i.em< 3. Therefore W(P¥ 2/3 + 2 « 3/8 < 5/3.

If J12/7-1<u, < 2Y2_1 and Uy < 2Y3_ 1, then no more task with a utili-
zation greater tha® can be assigned to the process@., m < 3, since2%-1 +
J12/7-1 + 25 > 1. Therefore W(Px 2/3 +1/2 + 1/3 < 5/3. If J/12/7-1 < u, <

oY2_1 and2”3-1 <u, < 412/ 7-1, then no more task with a utilization greater than

103

5 can be assigned to the processer,m< 3, since2” °—1 +/12/7-1 #7°-1 &
> 1. Therefore W(Px 2/3 + 1/2 + 3/8 < 5/3.

If 2Y2_1 < u, < (12/7) 2/3—1, then at most one more task with a utilization
greater tha® and less thar(12/ 7) Y3_1 can be assigned to the processetr,m< 3.
Therefore W(Pk 2/3 + 2/3 + 1/4 < 5/3.

Case VI: (12/7) #3_1 <u, <5/7. There are several sub-cases to consider.

If d<u, < (12/7) 1/3—1, then at most two more tasks each with a utilization
greater tham can be assigned to the processor,mes 4, since(12/ 7) #3_1 +3>1.
Therefore W(Px 3/4 + 3 1/4 < 5/3.

If (12/7)1/3—1 < U, < 2"3_1 and Ug < (12/7)1/3—1, then at most one
more task with a utilization greater thanan be assigned to the processer,m< 4, since
(12 7%°-1+ (1277 7°=1 + 35> 1. Then W(Pk 3/4 + 13 + 2 +1/4 < 5/3. Ifu,
<231 and (127 7) V3_q <u, < 21/3—1, then at most one more task with a utili-
zation greater thadand less thar{12/ 7) 3_1 canbe assigned to the processer,m
<4, since(12/7) %3 =1 +3[(12/ 7)Y~ 1] > 1. Then W(P)X 3/4 + 2+ 1/3 + 14 = 5/3.

if 2% 1< u, £ J/12/7-1 andu, < (12/7) Y3_1, then at most one more
task with a utilization greater th@tan be assigned to the procesger,m< 4. Therefore
W(P)< 3/4 +3/8 + 2 4/4 < 5/3. 112" °~1 <u, < J12/7-1 and (12/ 7 V' ° -1 <u,
< 21/3—1, then no more task with a utilization greater tharan be assigned to the pro-
cessari.e., m < 3. Therefore W(Pk 3/4 + 3/8 +1/3 < 5/3. 1f 2/°—1 < U3 < u,
<./12/ 7-1, then no more task with a utilization greater thamd can be assigned to the
processor, i.em< 3. Therefore W(P¥ 3/4 + 2 « 3/8 < 5/3.

If J12/7-1< u, < 2Y2_1 and Uy < 2Y3_ 1, then no more task with a utili-
zation greater thad can be assigned to the processer,m< 3, since (12/ 7) #3_1 4+
2 7-1+B>1,and(12/ 7% 3-1 +/12/7-1 ®7°~1 >1. Therefore W(R)
3/4 +1/2 +1/3 < 5/3.

If 2Y2_1 < u, < (12/7) 2/3—1, then at most one more task with a utilization

104

greater tha® and less thar(12/ 7) Y3_1 can be assigned to the processer,m< 3.
Therefore W(Pk 3/4 + 2/3 + 1/4 < 5/3.

If (12/7) #3 1< u, < 5/7, then no more task with a utilization greater tban
can be assigned to the processer,m< 2, since 2[(12/7) 2/3—1] + 6 > 1. Therefore
W(P)< 3/4 + 3/4 < 5/3.

Case VI: 5/7 «u; < 1. Since 5/7 «u,, the total utilization of the rest of the tasks is
less tharll - 5/7 = 2/7 <./12/ 7— 1. Furthermore, since 5/7 %2 1, at most one more
task with a utilization less thagf12/ 7—1 can be assigned to the proces3drerefore
W(P)< 1+ 3/8 < 5/3.

Let N andN, be number of processors required by RM-FFDU and the minimum
number of processors required to schedule a giveh akh tasks, respectively. Then the
total weight of the task set is given %”: L W(u) . Since W(P} 1 for every processor
in the RM-FFDU schedule, theii”: 1W(u) =N - 4. Since W(Px 5/3 for every pro-

> <5/3. m

cessor in the optimal scheduléN 5 yii“: JW(u) . Therefore Oy rrpy <

Proof of Theorem 3.17:We first claim thatD:M_FFDU < 5/3 underx (0,
0.13477]. Forx< 0.13477 = (321/6— 1) - 0.6, if a processor is assignethsks, thenn +
1)(21/ (n+1) _ 1) —-x> 0.6 forn=> 5. If a processor is assigned six or more tasks,ren
6u > 0.6.

For 0.1347& x< 0.143492 = (?21/5— 1) - 0.6, if a processor is assignethsks,
then @ + 1)(21/ (n+D _ 1) -x>0.6 forn= 4. If a processor is assigned five tasks or more,

then U= 5x > 0.6. Now we need only to considéEFDU undéf®.14349, 1/2]

From Lemma 3.11 to Lemma 3.16, we conclude thaf, crpy, < 5/3. n
e _ 9
Theorem 3.18: Opy_ rppu = 3

Proof: In order to prove that the bound is tighte \Weed to show that the upper
bounded number of processors is indeed required for sogeetéek sets if they are sched-
uled by the RM-FFDU algorithm.

Letn =15, wherek > 0 is a natural number.

105

Then we can construct the following task set:

u, =0.2, fori=1, 2,...,n.

In the completed RM-FFDU schedule, each processor is assigned three tasks since
0.2> 2/]_|13: 1 (1+ 0.2 -1. Therefore, a total ai/3 processors is used to schedule the
task set, i.eN =n/3.

In the optimal schedule, each processor is assigned five tasks since 52.0.2 =
Hence, a total ofi/5 processors is used to schedule the task set\je.,n/5. =

N/ N, =5/3.

wio

Together with Theorem 3.17, we conclude thal, _crp, =

In this section, we propose a new heuristic algorithm for scheduling a set of fixed-
priority periodic tasks on a multiprocessor system. The worst case performance bound of
the algorithm is shown to be significantly lower than those in the literature. In fact, this

bound of 1.6667 is the lowest bound ever obtained for the RMMS problem.

3.8. Heuristic Algorithms Using the Necessary and Sufficient Condition

In the previous sections, we have developed and analyzed several scheduling algo-
rithms based on various schedulability conditions. While the algorithmsfiiergfwith
either linear orO (nlogn) time complexity their performance may gaf because those
conditions are not necessaBven though using the IFF condition may require more than
exponential time in some cases, we would like to know the performance of algorithms that
use the IFF condition. In the following we will study two algorithms, one on-line and the
other off-line, that use the IFF condition.

The first algorithm is an on-line one and it is called the Rate-Monotonic-First-Fit-
IFF (RM-FF-IFF). It is almost the same as the RM-FF algorithm, except that instead of the
UO condition, the IFF condition is used to schedule tasks. It is given in Figure 3.10.

All the theorems that are valid for RM-FF are valid for RM-FF-IFF because the IFF

condition is not only stitient but also necessaiiyor this algorithm, we prove that its per-

106

Rate-Monotonic-First-Fit-IFF (RM-FF-IFF) (Input: task sek; Output:m)

Let the processors be indexed as P P o with each initially

idle. The tasks LSTR PYRTTS T, will be assigned in that order. To

assign T,,f indthe leastjsuch thattask T, can be feasibly sched-
uledon P ; according to the IFF condition and assign T, toP ;. Now
processor P ; has one more task assigned on it.

Figure 3.10: Algorithm RM-FF-IFF

formance is upper bounded by 1.96, as stated in the following theorem.

Theorem 3.19: Let N and Iy be the number of pcessorsequired by RM-FF-IFF
and the minimum number ofqmessors requad to feasibly schedule a given set of tasks,
respectively. Then M 1.96\, + 1.

Proof: Let & = {1, T, ...,T,,} be a set ofm tasks, with their utilizations
U, U,, ..., U . Then the total utilization of the tasks is given Eylmz . U;- Suppose that
among theN processors in the RM-FF-IFF schedulgs the number of processors to each

of which exactlyi > 1 tasks are assigned. Ther- zl‘”: . ;- For convenience, we lat=

202?18

Among theN processors in the RM-FF-IFF schedule, forrih@rocessors to each
of which one task is assigned, we have by Theorem 3.3 that

1/n,
O>n/2-1n2/4. (Eq.3.42)

n, [l
Zi:lui >n,/L+2
According to Lemma 3.2, among all processors on each of which at least two tasks
are assigned, there are at most one processor whose utilization is not greater than

2(21/3 —1) =a. Hence,

ZiNz‘lnlui > 2a(N-n, —1) (Eq.3.43)

Since the total utilization of the task set must be equal to the total utilization of the

processors to which the tasks are assigned, we have
N

zim= 1Y = Z.nlz LEDY :_1nlUi -

107

According to inequalities (3.42) and (3.43), it is immediate that
Z.m: U2 /2-1n2/4+2a(N-n—1) .

SinceNo= }"_ | u;, we have

No=2aN-1In2/4-1-(2a- 0.5)n;.
Because any two of the tasks that are assigned g firecessors cannot be sched-
uled on a single processor in the optimal schedule, weNpxe;.

ThenNg=2aN-1In2/4-1-(2a—-0.5n, 22aN-1In2 / 4- (2a - 0.5Ng

N _2a+05_ ((In2)/4+1) 1
N, 2a 2a N,

P < 2a+t05
RM-—FF-IFF = 7 o4

(Eq.3.44)

Hence,[] =1.96.

Fora=max _,_,(C,/T,) <a, by aguments similar to the above one and the one
in the proof of Theorem 3.9, we obtain the rest of the results that are the same as listed in
Table 3.2. []

The following theorem shows that the worst case bound for RM-FF-IFF cannot be
better than 1.72.

Theorem 3.20: 0%y, rr_jpe 21+ 1/ (2IN2 =1.72

Proof: For any giverN,, we construct a task set such that in the optimal schedule,
N, processors are required while in the RM-FF-IFF schedule N, + |_N0/ (2In2)J
processors are required to schedule.

Recall that the worst case utilization boundﬁle/n - 15 can be achieved by the

following set ofn tasks:

i/n , 1/ i/n

C=2 (2 "_1), T,=2"",fori =0,1,...,n— 1. Thesen tasks totally utilize
the processor in the time period of [0, 2]. The total utilization ohtkesks is therefore
given byU =n (Zl/n -1).

Next, we want to decide the number of tasks needed to have a total utilization of

close to but no greater than 1/2 for each ofrtkesks above. This number is given by

108

m=|0.5/82""-17) (Eq.3.45)

The task set which achieves the desired bound is given as follows:

It consists ofn ntasks each with a utilization @ " -1 andasks each with a
utilization of 1/2 +d for any arbitrary small numbér> 0. The tasks with lgger utilizations
follow those with smaller utilizations.

For the tasks with smaller utilizations, they are divided migroups each with
tasks. A group off tasks is given by

c=2""2""-1),T.=2"" fori=0,1,..,n-1.
Following these tasks aretasks as given by

i/né,Ti = 2i/n,fori =0,...,n-1.

i/n 1

c=2""1@""-1)+2
In the RM-FF-IFF schedule, the firste ntasks will filli processors, while the last
n tasks will filln processors. Hendé=n + m.
In the optimal schedule processors are needed. The task assignment is arranged
in such a way that all the tasks with the same period are assigned to one processors, since

vn_ 1) + 1/2 +d < 1 for sufficiently smalb. HenceN, =.

m(2
N/Ny=(@+m/n=1+|05F2""-18] h - 1+1/(2In2 whenn - w.
Therefore we have proven thag,, cr_er 21+ 1/ (2In2) . n
The second algorithm is anfdihe one and it is called the Rate-Monotonic-First-

Fit-Decreasing-Utilization-IFF (RM-FFDU-IFF). Before it schedules the tasks, RM-

FFDU-IFF first sorts the tasks in the order of non-increasing task utilization. It is almost the

same as the RM-FFDU algorithm, except that instead of the UO condition, the IFF condi-

tion is used to schedule tasks. It is given in Figure 3.11.

Rate-Monotonic-First-Fit-IFF (RM-FF-IFF) (Input: task sek; Output:m)

Sort the tasks in the order of non-increasing task utilization.
Call RM-FF-IFF

Figure 3.11: Algorithm RM-FFDU-IFF

109

Theorem 3.21: Oxy_ erpu—ire < 9/3.

This is true by Theorem 3.17.

The following theorem shows that the worst case bound for RM-FF-IFF cannot be
better than 1.44.

Theorem 3.22: Oxy_ erpu—irr 2 17 (IN2) = 1.44.

Proof: For any giverN,, we construct a task set such that in the optimal schedule,
N, processors are required while in the RM-FFDU-IFF schedl#eN,/ (In2) proces-
sors are required to schedule it.

Letn> 100 is an integek > 0 is an integer, anah is determined by

m=| /52" -17) (Eq.3.46)
A set ofm ¢ n ¢ ktasks which achieves the desired bound is given as follows:
It consists ofm ¢ kgroups of tasks. Each group metasks in it. All than ¢ kgroups
are identical. A group af tasks is given by

i/n ,A1/n i/n

c=2""@""=1),T,=2"" fori=0,1,....n-1.

Since all tasks have the same utilization, we can assume that the order of the tasks
after sorting is the same as it is given.

In the RM-FFDU-IFF schedule, each group of tasks is assigned to one processors.
A total of m « kprocessors is used in the RM-FFDU-IFF scheduleN.e.m ¢ k

In the optimal schedule, a total® kprocessors is used, i.&l, n=>k

ThereforeN/ Ny =m/n= Ll/HZl/n—lﬁj In - 1/In2.

Orm— rrouirr 2 1/ (In2) . "

We have reason to believe that the worst case performance bounds for RM-FF-IFF
and RM-FFDU-IFF can be further improved. We conjecture that the upper bound for RM-
FF-IFF can be lowered th.86 and the upper bound for RM-FFDU-IFF can be further

reduced to 1.5.

110

3.9. Average Case Performance Evaluation

In the previous sections, the performance bounds of the new algorithms were
derived under worst case assumptions. While a worst case analysis assures that the perfor-
mance bounds are satisfied for any task set, it does not provide insight into the average case
behavior of the algorithms. Do the algorithms perform on the average close to its worst case
performance? Do the worst case performance rankings of the algorithms stand as they are
in the average case® @&nswer these questions, one can analyze the algorithms with prob-
abilistic assumptions, or conduct simulation experiments. Since a probabilistic analysis of
the algorithms is beyond the scope of this thesis, we resort to simulation.

The simulation is conducted by running the algorithms onge laumber of com-
puter generated sample task sets and averaging the results over a number of runs. The task
sets are generated by using one of the random number generators, which can generate num-
bers with very good approximation to the uniform distribution. The number of runs for each
data point is chosen mostly to be 20 or more, since for our experiments, 20 rugs is lar
enough to counter the effect of “randomness”.

The simulation consists of three stages. In the first stage, we will compare the per-
formance of all on-line algorithms. In the second stage, we will compare the performance
of all off-line algorithms. Finally, a different approach is used to evaluate the performance

of various algorithms.

3.9.1. Performance Comparison of New and Existing On-line Algorithms

We present simulation experiments fogkatask sets withO0O< n< 1000 tasks. In
each experiment, we vary the value of paranweter the maximal load factor of any task
inthe set, i.eq = max (C,/T,) . The task periods are assumed to be uniformly distributed
with values 1< T; < 500. The run-times of the tasks are also taken from a uniform distribu-
tion with rangel < C; < aT;. The performance metric in all experiments is the number of

processors required to execute a given task setlirdt compare the performance of the

111

following on-line algorithms:

« RMNF [20]

e NF-M [16]

* RMGT-M (Section 3.6)

* RM-FF (Section 3.3)

« RM-FFF-IFF (Section 3.8)

Since an optimal schedule cannot be calculated fge k&sk sets, we use the total
utilization (or load)U = Z”: G/T of a task set as the lower bound for the number of
processors required. Except for certain figures, each data point in all figures in this section
represents the average value of 20 runs of an algorithm on independently generated task
sets with identical parameters. All algorithms are executed on identical task sets. The
results are plotted in Figure 3.12 for= 0.2, Figure 3.13 fom = 0.5, Figure 3.14 fom =
0.7, and Figure 3.15 far = 1.0.

1503

1353
1203
1054

901

754

Number of Processors

60

454
] —— RMNF

-—%- NF—M

--0--- RMGT—M

—-e-- RM—FF

—— RM—FF—IFF

—e— Total Load

304

100 200 300 400 500 600 700 800 900 1000
Number of Tasks

Figure 3.12: Performance of Some On-line Algorithmsd = 0.2)

From the experiments, we conclude that

* All the new on-line algorithms outperform the existing ones.

Number of Processors

Number of Processors

112

450+
] ’/AE
4054 -
3604
3157 -1
2704
225
1804
1354
] —=— RMNF
907 - - NF—M
] - -0+ RMGT—M
45§l —-e-- RM—FF
—+— RM—FF—IFF
—e— Total Load
100 200 300 400 500 600 700 800 900 1000
Number of Tasks
Figure 3.13: Performance of Some On-line Algorithmsg(= 0.5)
600+ p
5404 i
4804 2 »
] > Lo
] = e
420—: ///, o -/./_/ -
360 P e
3004 e T
: e o
240—_ A "__,—'/.._/'/
E ~ _»'O“'/'/‘
180+ //0/
] P — RMNF
120—_ _z ,,-;—./'/ - - NF—M
] /;;,'./-Q/‘ --0--- RMGT—M
60 2= —e- RM—FF
—+— RM—FF—IFF
o —e— Total Load
100 200 300 400 500 600 700 800 900 1000
Number of Tasks

Figure 3.14: Performance of Some On-line Algorithmsd = 0.7)

* RM-FF-IFF outperforms all other algorithms, though it takes a considerably
large amount of time to compute the results. The larger the ratio between any

two task periods, the longer time RM-FF-IFF takes to compute the results.

113

800+
7204 4
6404
i .9
5604
§ 480—;
S 4004
o]
=]
= 320—:
S]
= 2404
] —— RMNF
1604 - - NF—M
] e -6 RMGT—M
80k = —-e-- RM—FF
: —— RM—FF—IFF
—e— Total Load

100 200 300 400 500 600 700 800 900 1000
Number of Tasks

Figure 3.15: Performance of Some On-line Algorithmsg = 1.0)

* The performance ot RMGT-M gets betteloasecomes smaller, while the op-
posite holds for RM-FF even though the improvement in RM-FF seems small.
* The number of processors required to schedule a given task set grows propor-
tionally with the number of tasks in the set. The number of processors required
to schedule a set of tasks also grows proportionally with the value of
Since we only show the performance of three new algorithms in the previous exper-
iment, there are some others that need to be consideeechd¥e to compare the perfor-
mance of RM-FF against that of others for good reason. As it will be shown, the
performance of RM-FF is quite representative of the several algorithms considered below:
* RM-FF (Section 3.3)
* RM-BF (Section 3.4)
* RRM-FF (Section 3.5)
* RRM-BF (Section 3.5)
All these algorithms are executed on the same task sets as previously used. The

results are plotted in Figure 3.16 for 0.3, Figure 3.17 fam = 0.7, and Figure 3.18 for

114

275
2504
2253
200 e e
1759 ’
1504
1254

1004

Number of Processors

757

—— RM—FF
-—+- RM—BF
--0--- RRM—FF
—-e-- RRM—BF
—+— Total Load

504

254"

O: T T T T T T ; ;
100 200 300 400 500 600 700 800 900 1000
Number of Tasks

Figure 3.16: Performance of RM-FF, RM-BF, RRM-FF, and RRM-BF (a = 0.3)

The following conclusion is accordingly made

* RM-FF and RM-BF perform almost identically, and so do RRM-FF and
RRM-BF. RM-BF performs a little bit better than RM-FF in some cases.

* RRM-FF and RRM-BF outperform RM-FF and RM-BF wleers large.

* Whena is small (but not smaller), RM-FF and RM-BF performs better than
RRM-FF and RRM-BF. The performance of RRM-FF(-BF) and that of RM-
FF(-BF) becomes identical whenreaches the threshold value, which is

(21/3— 1) in our experiments.

3.9.2. Performance Comparison of New and Existing Off-line Algorithms

Just as we have done for the on-line algorithms in the previous sub-section, we sim-
ulate the performance of the new and existiridiné algorithms following the same strat-
egy. We compare the performance of the following algorithms:

« RMFF [20]

115

450+
p =3
4057
] e
3604
315
% 27o€
g 2254
o]
=]
P 1804
%]
= 1354
904 —— RM—FF
] - - RM—BF
453 —— RRM—FF
—-e-- RRM—BF
—+— Total Load

100 200 300 400 500 600 700 800 900 1000
Number of Tasks

Figure 3.17: Performance of RM-FF, RM-BF, RRM-FF, and RRM-BF @ =0.7)

600+
5404
4804
4204
g 360€
S 3004
o]
=]
= 240+
%]
= 1804
1204 —— RM—FF
] - - RM—BF
604 —— RRM—FF
] - - RRM—BF
—+— Total Load

100 200 300 400 500 600 700 800 900 1000
Number of Tasks

Figure 3.18: Performance of RM-FF, RM-BF, RRM-FF, and RRM-BF @ =1.0)

 FFDUF [17]
* RMST (Section 3.6)

116

* RMGT (Section 3.6)

* RM-FFDU (Section 3.7)

« RM-FFDU-IFF (Section 3.8)

The same task sets as used in the previous experiments are run through-these of

line algorithms. The results are plotted in Figure 3.1%ifer0.2, Figure 3.20 fom = 0.5,
Figure 3.21 fox = 0.7, Figure 3.22 fom = 1.0.

From the experiments, we conclude that

— Except for RMST and RMGT whemis large, all the new algorithms outper-
form those existing ones.

- Except wheru is small, i.ea < 0.25, RM-FFDU-IFF outperforms all other
algorithms. Again, RM-FFDU-IFF takes considerably more time to compute
the results.

— The performance of RM-FFDU-IFF and RM-FFDU improvesi dgecomes
larger, while the performance of RMST and RMGT degrades.

— RMST and RMGT performs the best wreeis small, i.ep < 0.25. Of course,
the performance of RMST and RMGT is identical whex 1/3.

— Though the performance of RM-FFDU and FFDUF is quite close, RM-FFDU
performs consistently better than FFDUF.

— RMGT still performs quite well whea < 0.7.

3.9.3. Yet Another Performance Evaluation of the Algorithms

The total utilization (load) of a task set is givenf)?: G/ T which can be con-
sidered as the minimum number of processors required to execute the task set. It is a lower
bound on the number of processors to be computed. The number of processors used to exe-
cute a task set is more than twice its total utilization in some cases for some algorithms.

This comparison may be overly pessimistic, since the optimal number of processors may

117

140+)
1264
1124
] 9
984
e 70
o]
=]
5 5%
S]
=]
427 —«— RMFF
] - - FFDUF
284 --0--- RMST
] —-o-- RMGT
143 —— RM—FFDU
- > - RM—FFDU—IFF
o —e— Total Load
100 200 300 400 500 600 700 800 900 1000
Number of Tasks
Figure 3.19: Performance of Off-line Algorithms @ = 0.2)
330
] 3
3004 v
2707
240
g 2104
S 180
o]
S 1504
=]
€ 1201
= 5 —— RMFF
907 - - FFDUF
] --0--- RMST
60 —-- RMGT
1 —— RM—FFDU
30% - ==~ RM—FFDU—IFF
—e— Total Load
o4 ; .

100 200 300 400 500 600 700 800 900 1000
Number of Tasks

Figure 3.20: Performance of Off-line Algorithms @ = 0.5)

differ from the total utilization greatly in some cases, and little in other cases. Therefore,
using the total utilization of the task set as a baseline for performance comparison may not

capture the whole picture. The ideal solution would be to find the optimal number of pro-

118

450+
p E 3
] b
405
3604
3154
g 270
S 225
-]
=]
g 1807
S]
=]
1357 —— RMFF
] -+ - FFDUF
90 --0--- RMST
] —-e-- RMGT
; —+— RM—FFDU
45+ - - RM—FFDU—IFF
] —e— Total Load
100 200 300 400 500 600 700 800 900 1000
Number of Tasks
Figure 3.21: Performance of Off-line Algorithms @ = 0.7)
700+ ‘
630 .
1 :® 3
5604
4904
B 420—;
S 3504
o]
=]
5 280
%]
= -
2107 —— RMFF
] - - FFDUF
1404 ~o-- RMST
] —-e-- RMGT
solz —— RM—FFDU
- ==~ RM—FFDU—IFF
—s— Total Load

100 200 300 400 500 600 700 800 900 1000
Number of Tasks

Figure 3.22: Performance of Off-line Algorithms @ = 1.0)

cessors for any given task set. This will, howevequire at least exponential time with

respect to the number of tasks using existing techniques, since the scheduling problem is

119

NP-complete.

This observation leads us to the employment offargifit methodologyJnder this
methodologya task set is generated randomly with the constraint that in the optimal sched-
uling, it fully utilizes a known number of processors. In other words, givenocessors
and the average number of tasks to be run on each proeesgmnerate a set of tasks that
fully utilizes m processors in the optimal schedule. This is accomplished in the following
steps:

(1) M arrays of random numbers are generated. The sizes of the arrays are uniformly

generated, with a mean value corresponding to the average number of tasks on
a processor.

(2) Each item in an array is divided by the sum of all items in its array to obtain a

number between 0 and 1, which corresponds to the utilization of a task.
(3) For each of then arrays, a number is generated as the period of all the tasks in
that array. The numbers are randomly generated between 1 and 100.

(4) A number is randomly selected from tinearrays of numbers and then output
as the utilization of a task. The computation time of the task is the product of its
utilization and its period. This process of random outputting of tasks is repeated
until all numbers in then arrays are picked.

Using this methodology to generate task sets, the performance of some of the algo-
rithms is plotted in Figure 3.23 and Figure 3.24. The average number of tasks assigned on
a processor in the optimal schedule is selected to be 3 in Figure 3.23 and 6 in Figure 3.24.
Each data point is the average value of 20 independently generated task sets with identical
parameterOn the x-axis, the number of processors is the optimal nupef processors
required to execute a task set. On the y-axis, the extra percentage of processors is defined
as (N, = Ny) / Ny, whereN, is the number of processors required by a scheduling algo-
rithm A to schedule the same task set. Note that the performance of the algorithms is con-

sistent with that previously shown.iW these figures, we have a better idea of what

120

percentage of extra processors is needed for each algorithm for a given task set.

60y~&-
] ‘\‘\\‘*\\
54 Tao
] N S —
48—: "O Tt~ --7 7 Tt oo *— oo ——— " 4
424
[O-rrnnnnnnns (o
1 —— RMNF O
£ 36 --- NF-M O AR AR A
2 1 --0--- RMGT—M
= {—-o-- RRM—FF
S 304 —— RM—FFDU
— 1--~- RM—FF—IFF
= 1 —e— RMST /e\e—e/e\e
= 24.‘ —-x-- RMGT
<=]
E .
A T e P - e o I - <
12_: T e T T = ¥ — e — e — —_— . — e — e — H— o — e — - e — e — e — —
64 ______ .o
] B RS ———————- fmmm—-— dmmmm- T —— - T
0- T T T T T T T T
20 40 60 80 100 120 140 160 180 200
Number of Tasks
Figure 3.23: Performance of Some Algorithms (Tasks/processor = 3)
60+ N
i TE-l
54—f = “~~_\X_ ______ . e T
N N “-- 2 e - - — - ¥ —————— * -
] R i - -
48': —— RMNF
] -—+%- NF—M
3 --G--- RMGT—M
L2 42: K —-e-- RRM—FF
S] —+— RM—FFDU
& 364 O -—-- RM—FF—IFF
= ~. T (P RMST
= T~ ° — - RMGT
S 304 Se———— - S T @ — @ — — — — — @ — . .
=] : “ T g Qe §mminig
—] e
S 247
B 1B e
KDQ_) Eh ------- -l
12__ X— s — e — e — - e — e — - — e — e — e — - — Xe— o ———" Xe—— - — = X—o— e — - — -
o e
0- T T T T T T T T
20 40 60 80 100 120 140 160 180 200

Number of Processors

Figure 3.24: Performance of Some Algorithms (Tasks/processor = 6)

From the experiments, we conclude that

— The performance of most of the algorithms is quite good on the average, using

121

less than 70% extra percentage of processors.

— The performance of RM-FFDU, RRM-FF, and RM-FFDU-IFF degrades a lit-
tle bit as the number of tasks assigned on each processor becomes larger, i.e.,
the average task utilization decreases.

In the above experiments, we only consider the performance of the algorithms for
large number of processors. In many practical applications, the total number of processors
used may be less than 20 processors. In order to assess how some of the algorithms perform
under this condition, we conduct similar experiments, the results of which are given in Fig-
ure 3.25 and Figure 3.26. Note that each data point represents the average value of 40 inde-
pendent runs wittM = 4. It is apparent that except for RMGIT and NF-M whose
performance depends on the valudvhfthe performance of the rest of the algorithms is
quite consistent. Therefore, we can conclude that most of the algorithms are suitable for

applications requiring few processors as well.

1004
1 —— RMNF
i -+ - NF—M
909 --G--- RMGT—M
] ° —-o-- RRM—FF
804 O . —+— RM—=FFDU
] - -~ - RM—FF—IFF
3 La —e— RMST
704 o —-- RMGT
a2]
§ 60—_
=]
£ 504
35]
=407
-]
s
§ 304
& [
204
104
o]

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Processors

Figure 3.25: Performance of Some Algorithms (Tasks/processor = 3)

122

1004

1 —x— RI’E_ANF
1 - - % - NF—M
90- B --0--- RMGT—M
] —-0-- RRM—FF
804) —+— RM—FFDU
i = === RM—FF—IFF
3 —e— RMST

7094 O — %= RMGT
E \

60 »7

504 T [e -

Percentage of Extra Processors

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Processors

Figure 3.26: Performance of Some Algorithms (Tasks/processor = 6)

3.10. Summary
In this chaptermwe have proposed a number of scheduling algorithms for the RMMS
problem. All the algorithms are analyzed with respect to the worst case performance, and
simulated for average case performance. Though some algorithms are better than others in
the worst case, each of them has advantages that others do not.
— The algorithms based on the IFF condition outperform others in most of the
cases. Yet it is time-consuming to execute these algorithms.
— The algorithms based on the UO condition have very good and consistent per-
formance. Furthermore, they are simple and fast in execution.

- RMGT and RMGT perform best when the utilization of each task is small.

Chapter 4 Supporting Fault-Tolerance in Rate-Mono-
tonic Scheduling

“Do not venture all your eggs in one basket.”
-- Spanish Proverb

In this chapter, we address the problem of supporting timeliness and dependability
at the level of task scheduling.e&onsider the problem of scheduling a set of tasks, each
of which, for fault-tolerance purposes, has multiple versions, onto the minimum number of
processors. On each individual processioe task deadlines are guaranteed by the rate-
monotonic algorithm. A simple on-line allocation heuristic is proposed. It is proveN that
< 2.33Np + K, whereN is the number of processors required to feasibly schedule a set of
tasks by the heuristi®g is the minimum number of processors required to feasibly sched-
ule the same set of tasks, and the maximum redundancy degree of a task. The bound is
also shown to be nearly tight. The average case behavior of the heuristic is studied through
simulation. Experimental data show that the heuristic performs surprisingly well on the
average.

There are two general approaches to achieve fault-tolerance under RM Scheduling
(RMS). The first approach [21] considers processor failures only; a set of periodic tasks is
assigned to a processor such that their deadlines are met with the assumption that the pro-
cessor is fault-tolerant. The fault-tolerant processor may be implemented by such hardware
redundancy techniques as the TMR, where triple processors are used to execute the same

tasks and the final results are decided upon through voting mechanisms. The major draw-

123

124

backs of this approach are: (1) tasks are treated unifamyyactise, howevesome tasks

may be more critical than others, and their correctness should be ensured by all means,
while others may be allowed to miss their deadline occasioifa)jl\Resources (e.g., pro-
cessors) are undetilized. (3) Possible task errors cannot be prevented from causing total
system failures. The second approach can, in themeyate processor failures as well as

task errors. Under this approach, a task is replicated or implemented using several versions.
The copies or versions of a task are executed @reiift processors in order to tolerate pro-
cessor failures. Multiple versions of a task are executed so that possible task errors can be
tolerated if they are not the same [2]. Since this approach is more general in the sense that
the degree of redundancy on the task level and the processor level is allowedftydra dif

and the tolerance of task errors is taken into account, we focus on this approach in the rest
of the chapter and study its effectiveness when it is combined with the RMS.

For this approach to work, it is apparent that copies or versions of a task should be
assigned to diérent processors and the total number of processors used should be mini-
mized. The importance of minimizing the number of processors used to accommodate a set
of tasks should not be uneestimated. First, more processors will introduce more proces-
sor failures, under probabilitpecond, more processors wilfeaft the cost, weight, size,
and power consumption of the whole system, the increase of any of which may jeopardize
the success of the whole application. Therefore, we want to minimize the number of pro-
cessors required to schedule a set of replicated, periodic tasks such that the timeliness and
reliability of the system is guaranteed.

Although it is quite straightforward to assign copies or versions of a taskeiedif
processors is quite straightforward, it is non-trivial to minimize the number of processors
used to schedule a set of tasks. In fact, the minimization problem has been proven to be NP-
complete even in the case where each task has only one copy [43]. Hdhievact does
not make the problem go away; rather it requires that heuristic algorithms must be devel-

oped to solve it. In the following, we propose a simple scheduling algorithm to solve the

125

problem. V¥ then analyze the performance of the algorithm under worst case assumption,
and show that in the worst cases, the number of processors used by the heuristic algorithm
is no more than 2.33 times that of an optimal algorithm. This is, to our knowledge, the first
nearly tight bound obtained for this particular problene. & also interested in the aver-

age case behavior of the algorithm. Simulation results show that the algorithm performs
very well on the average. &\believe that this is an important step towards building fault-

tolerant real-time systems based on the RMS theory.

4.1. Task Model
The Rate-Monotonic Scheduling theory was developed under a set of assumptions.
These assumptions, along with the new requirement of task redundemsyated as fol-
lows:
(A) Eachtask hasversions, wherg is a hatural numbefhek versions of a task
may have dfierent computation time requirements, andkkersions may be
merely copies of one implementation or truly versions dédght implemen-
tations.
(B) All versions of each task must be executed on different processors.
(C) The requests of all tasks are periodic with constant intervals between requests.
The request of a task consists of the requests of all its velistora| versions
of a task are ready for execution when its request arrives.
(D) Each task must be completed before the next request for it arrives, i.e., all its
versions must be completed at the end of each request period.
(E) The tasks are independent in the sense that the requests of a task do not depend
on the initiation or the completion of requests for other tasks.
Assumptions (A) and (B) make a rather general statement about the redundancy
schemes used by each task. The term “version” has been uUsaeiision programming

[2] to denote multiple implementations of a task. However, for the sake of convenience, it

126

is used here to denote both true versions of a task and mere copies of a single task version.
In the case of using merely duplicated copies, the errors produced by a task cannot be tol-
erated, since all the versions, or merely duplicated copies, produce the same results. But
processor failures can be tolerated by using mere copies of a task. Here we are not con-
cerned with details about what faults are to be tolerated or how faults are tolerated, rather
we make the general statement that for fault-tolerance purposes, each task has a number of
versions that must be executed orfedldnt processors. Note that the number of versions
used by each task may be different, i.e., egch ~ may assume a different value.

Assumptions (C), (D), and (E) represent a simplified model of most practical real-
time applications. This basic model may not be of much practical relevance if it cannot be
extended to accommodate other requirements. Recently this model has been adapted and
extended in many aspects by researchers in solving practical problems [8, 69, 72].

FT-RMMS Scheduling Problem: a set ofn tasksz = {1, T, ..., T} is given
with 1, = ((C,1, Cip, ..y CiKi),Ri, D, T,) fori=1,2,...,n whereC, C,, ..., CiKi are
the computation times of the versions of task;. R;, D;, andT, are the release time, dead-
line, and period of task, respectivelyThe question is to schedule the taslkésesing the
minimum number of processors such that all the task deadlines are met and all versions of
a task execute on different processors.

An optimal algorithm is the one that always uses the minimum number of proces-
sors to execute any given task set. According to Assumption (D), the deadline of each task
coincides with its next arrival. For periodic task scheduling, it has been proven [46] that the
release times of tasks do nofteat the schedulability of the tasks. Therefore, release time
R and deadlin®; can be safely omitted when we consider solutions to the probjjem.

Cij I T, is the utilization (or load) of thgh version of task;. u, = ZJK: 1Cij/Ti is the

utilization (or load) of task;.

127

4.2. The Design and Analysis of FT-Rate-Monotonic-First-Fit

Since the result of 9m) / (8 (m—r+ 1)) by Bannister andrivedi [5] is very
attractive in view of workload distribution among the processors, it is quite tempting to
expect that based on their algorithm, a good heuristic could be developed to solve the FT
RMMS problem. Even though no schedulability test is introduced in their algorithm, it can
be added. The restriction that all tasks have the same number of clones and all versions of
a task have the same computation time can be relaxed. The major problem left is to mini-
mize the number of processors. We accomplish this by using a binary search technique.

The design of the heuristic consists of two steps: first, assummgnber of pro-
cessors is sfitient for the execution of the task getAlgorithm 0 is used to assign ver-
sions of tasks to diérent processors such that versions of a task are assignefeitendif
processors, and the set of assigned tasks on each processor is schedulable under the RM
algorithm. Second, a binary search technique, Algorithm 1, is used to find the minimum

number of processors that is possible under Algorithm 0.

Algorithm 0 (Input: task sek, m; Output:succesk

(1) Initialize =0for1 <i <sm,andt=1.

(2) Assign the K; versions of task t simultaneously to the K; least
utilized processors, and increment the utilization for each
processor i to which a version of task t has been aSSIgned Ijy
Cy/T,, where jU{1,2 ..k} . if y > ' 17, where | is the
number of versions having been assigned to processor i, Then
success = FALSE, return. Otherwise, t =t + 1.

(3) If t>n Then success = TRUE, return. Otherwise, go to (2).

Figure 4.1: Algorithm O

The lower bound for the number of processors that fecmuft to execute the task
set is given b)iinz 1EZK= .G E*/Ti , Which is the total load of the task set, without con-
sidering the fault-tolerant constraint that versions of a task be assigneteoendliproces-
sors. The upper bound is given by maX; icn) {k;} , which is equal to the total

number of tasks times the maximum number of versions of a task. The correctness of the

128

Algorithm 1 (Input: task sek; Output:m)

(1) LowerBound = ZI”: L BZJ.K; .G %/lﬂpperBound = nxmax, o {K}

(2) m= [QLowerBound + UpperBound) / 2 0 If (LowerBound = m) Then {m
=m+1;, EXITL

(3) Invoke Algorithm O(2,m,success); If success Then UpperBound =m

Else LowerBound = m.Goto (2).

Figure 4.2: Algorithm 1

algorithm is self-evident.

Theorem 4.1: Let N and Iy be the number of pcessors requad by Algorithm
1 and the minimum number ofogessors requad to feasibly schedule a set of tasks. Then
N/ Ny = C, where C is any given number.

Proof: This theorem is proven by constructing task sets that can achieve the bound.
Let the maximum number of versions of a task &el. Then for any give@ = 2, the fol-
lowing task set is constructed:

The task set has a total ©ftasks, each havirgversions. ¥rsions of a task have
the same utilization. For the firsE ¢ 1) tasks, the utilization is given by a very small num-
bere > 0. The utilization of th€th task is given bﬁHZl/z— 1H . Since+ 2521/2— 1H

1/2

> ZHZ - 1H, none of the first@ — 1) tasks can be scheduled together withGttetask.

Therefore, a total df « kK processors are used by Algorithm 1, while the optimal algorithm
uses only processors, i€ < [1 - 2521/2—1H] / (C - 1). ThereforeN = C K, Ny = K,
andN/Ny = C. n

The worst case performance of Algorithm 1 is very poor; it may be caused by the
incompatibility of the allocation algorithm and the binary search strafeggw algorithm
based on a bin-packing heuristic is thus developed to obtain better solution. This new algo-
rithm allocates versions of tasks to processors in the similar manner as bin-packing heuris-

tics pack items into bins, with the exception that versions of a task cannot be assigned on a

processor.

129

Bin-packing algorithms [15] are a class of well-studied heuristic algorithms, which
perform well for the assignment of variable-size items into fixed-size bins. Hqovaver
packing heuristics cannot be directly applied to solving thRMMS problem, since there
are two major dierences involved. First, the full utilization of a processor cannot be
always achieved for a set of periodic tasks scheduled by the RM algorithm. In other words,
the allocation of tasks to processors is equivalent to packing items into bins with dynamic
sizes. Second, the fault-tolerant requirement that versions of a task cannot be assigned onto
a processor further complicates the problem. Some modifications of the bin-packing heu-
ristics are necessaryere we choose to study the following heuristic, which is based on the
First-Fit bin-packing heuristic for its simplicity and effectiveness.

Let the processors be indexedPasP,, ..., with each initially in the idle state, i.e.,
with zero utilization. The task§1,, T,, ..., T,} Wwill be scheduled in that ordec is the

maximum number of versions of a task, ikes max, K. To schedule a versian

1<is<n}
of taskr;, find the least such thav, together with all the tasks (versions) that have been
assigned to processBy; can be feasibly scheduled according to the RM condition for a sin-

gle processorand assign task versiorto P;. When there is no confusion, we sometimes

refer to a version belonging to a taslsimply as task;.

When the algorithm returns, the valuenois the number of processors required to
execute a given set of tasks. Since an idle processor will not be used until all the processors
with some utilizations cannot accommodate a new task, it is therefore expected-that FT
RM-FF would have better performance than that of Algorithm 1, which is indeed the case
as shown by Theorem 4.2. Before proving the upper bound, hquaavember of lemmas
need to be established.

For clarity purposes, we use a slightlyfelieént notations in the proofs belowhe
versions belonging to a task are referred to as tasks belonging to a task group. Just as ver-

sions belonging to the same task should be allocated femethf processors, so should

tasks belonging to a task group. Accordirgs the maximum number of tasks in a task

130

FT-Rate-Monotonic-First-Fit (FT-RM-FF) (Input: task sek; Output:m)

(1) Seti=1and m = 1. /*i denotes the ith task, m the number of
processors allocated */

(2) (@) Set | = 1. /* | denotes the Ith version of task T Y
(b) Setj = 1. If the Ith version of task i together with the
versions that have been assigned to processor P. can be fea-
sibly scheduled on P. according to the RM condition for a
single processor and no version oftaskihas been previously
assigned to processor P., assign the Ith version of task i

to P; Otherwise, j =j+ 1 and go to step 2(b).
(c) Ifl> K;, i.e., all versions of task i have been scheduled,
then go to Step 3. Otherwise, increment| =1+ 1, and go to
Step 2(b).
(3) Ifj > m, then set m = . If i > n, i.e., all tasks have been
assigned, then return. Otherwise i =i+ 1 and go to Step 2(a).

Figure 4.3: Algorithm FT-RM-FF

group, i.e.K = MaX) <j<n K

Lemma 4.1: Suppose the maximum number of tasks imamisk. Among all the

processors on whichac = 1 tasks ae assigned therare at mosk processors, each of

1/ (c+1) L

which has a utilization less than or equal d:g|2 -10

Proof. The lemma is proven by contradiction. Suppose there ar& processors
: L [
each of which has a utilization less than or equmEﬁl/ (e+1) -10, and letP4, Py, ...,

P, .1 be thex + 1 such processors, andoe the number of tasks assigned to procéjsor

with n; > c. Let u; be the utilization of thgh task that is assigned to proced3pffor 1<

|<K+1and]_1<nI Thenz Ui <521/(C+1)

. L1/ (c+1)
Forlsxsng,,.ifu.,,, 22

. L1/ (c+1)
lizationu, ,, , < 2

L
K+1
sorandz CiUgs1j S CIR

—lg, forl<i<k + 1.
L . . :
— 1], then there exists a task with a uti-

L.
— 1, since there are totally, , ; > ctasks on each proces-

1/ (c+1)

—1H, wherex#yandl<y<n In other words,

K+1°
L L Lo
there exists a task _, , , on processoP, , , satisfyingu, ,, , < Dzl/‘“l’ — 1 with
zO{1,2..,n .}
. n, L1/ (c+1) L L1/ (c+1) U
Slncezj:lui,j + U, S CR -10 + 2 -10=(C + 1)

L1/ (c+1)

L . .
2 —1gforl<i<k, andu cannot be assigned on proced3pthere must

K+1,2

131

exist one and only one task among {t; ;|j =1 2 ...,n} that belongs to the same

il

group asu does, for ali = 1, 2, ..., K. In other words, the task group that contains

K+1,2

task T hask + 1 tasks. This is a contradiction to the assumption that the maximum

K+1,2
number of tasks in any groupks Therefore the lemma must be true. |

Lemma 4.2: If mtasks cannot be feasibly scheduledwon 1 processors accor
ing to FT-RM-FF, and > 1, then the utilization factor of the m tasks isajer thar2(m
) H21/2

Proof: Fork = 1, the lemma is true by Lemma 3.1. Kaz 2, there are two cases

—1H fork <m< 2k; or mHZl/Z—lH for m> 2.

to consider:
m U172 U . .

Case 1k <m< X. Then Zi Vi 2(m—-K) 32~ ~—10, wherey; is the utiliza-
tion of taskt;.

Since there arm > k tasks in total, these tasks must belong to at least tvevetit
task groups. Suppose that the least number of tasks in a group among taske i.
Since thesp tasks cannot be scheduled together with any other tasks on a single processor
we have

1/2

U +u'> ZHZ - 1H1 (Eq.4.1)

fori=1,2,...,pandj= 1, 2,..., m— p, whereuy;s are the utilizations of the p tasks, and

uj's the utilizations of the rest of the tasks (see Figure 4.4).

, m-p - p -
- K 7|~ m-—-K -
| | ‘ L] L 1
2 U

Figure 4.4: Task Configuration whenk <m < 2k

Apparently,zim: Y :Zimz"lpu; +ZF: LU, . Summing up thgm - p) inequali-
ties in (4.1) yields

L
1/2_ 1D-

P Zm!lpU; +Mm-p) Y7o 4 > 2(m-p) 52 (Eq.4.2)

132

If p=m-p, then
(S Pu + 5P u)2p S0+ m-p) $P_ .>ao(m P’ -1
Therefore,zi:1 : :zlm_l"’uI +zi:1ui >2(m—p)[|2 —15. Sincep <K,

we havem-p=m-k. zimzlui > 2(M-K) Hzl/z—lﬁ.

I_I

If p<m-p, then there are two sub-cases to conslfi@r= m - K, then from ine-
quality (4.2), we haveni-p)(3T Pu, + SP_Lu)z pzm‘fu; +m-p) SP_,u>2
p(m- p)HZl/Z—lH. In other words,zi LU= zlm_ 1'DuI + Zf’: YU > 2 HZl/Z—lH
> 2(m-K) Hzl/z— 1H, sincep = m - K by assumption. Ip <m -k, then there must exist
(m-k — p) tasks, which belong to some task groups that degeit from the task groups

the rest of th& tasks belong to. For each of time+ k) tasks as shown in Figure 4.5, it can

n-p e ptl_ .
I | | D‘ L]

Zui’ Zui

Figure 4.5: Task Configuration when2k <m

be paired with some of then(- K) distinctive tasks among the rest of iheasks, such that
we have

U + uf> 2|E||21/2—1H, fori=1,2,....m-kandj=1, 2,..., m—K.

Zl—l i Z u Zm_Ku > zm_Ku' + zm_Ku> 2(m - K) Hzl/z—lﬁ_

Case 2m> 2. Then Zm: Y >mH21/2— 1H. Proving this claim is equivalent to
proving the following:

Suppose that the total number of task grougsvish y > 2, and the maximum num-
ber of tasks in a group is then form > 2, Zlm u > m[|21/2 |_|

We prove this claim by using induction on the number of tasks in a group among
they task groups. Firstn =y, i.e.,y > . Since each task belongs to aetént group,
Zim: u, > mHZl/z— 1H according to Lemma 3.1.

Suppose thaE _ 1Y mHZl/Z— 1H is true forg; < p;, whereg; is the number of

133

tasks belonging to task group; = 1 is a constant number, fokl <y, and ZY: P =N
> m. Then for a newly added task belonging to task gypiips equivalent to saying that
g =p; + 1, orm=n+ 1. The newly added task cannot be scheduled on any wof the-

cessors. Let denote the newly added task with utilizatigp, , . Sincem<n, m> 2,

n+1
andk > p;, thenn > 2p;. For convenience, we Ipt=p;.
It Py, <(p+1)[|21/2 g, then
(P+D YTy +- p)zp” > 20+ 1)0-p) 27 -10
(P+ 13 -Pu +SP U +0-20-1) TP 1y
>(p+1) 0+ D210+ +1) 0-2p- D2V - 17,
Z”_fu, +3PIL >m+1)RY2-19+(-20-1) [p+ 1)521/2 zf’:ui].

Sincen-2p-1=0,

m _ n-p p+1 Ll.1/2 L
zl_lul Z|_1UI+Zi=1ui >h+1) R 1.
1/2 .
If Zip:iui >(p+1) [|2 —1D, there are two sub-cases to consider.
L.1/2 |_| 12 U
If un+1 > 2 “—10, then Zimzlui = Zi”:lui + U, >NR -1+
L1/2 12 |_|
2 =M+
L. 1/2 prl, .12 U
Ifun+1<[|2 —1 thenz Z U tu L >pe+r)E T -1g(we
U172 U ..
assumeu, Uy for convenlencez u pERT T -10. SlncernJr1 cannot be

scheduled together with any of the- p tasks on any processoz uI +(-pu, .,

>20-pRY*-17

Z|m_ 1Y = Zun— Eul + Zp+1u = zun— ;1)u| +Z:D: 1Y TUpyg

>20-p)2"” > -10+pR"*-10-(-p- 1y, ,,

= (+1)RY 219+ (-p-1) (2Y2-18-u_,)2 (n+)R *~17, since
n>p+ 1. []

Theorem 4.2: Let N and Ny be the number of processors required by FT-RM-FF
and the minimum number ofgqmessors requad to feasibly schedule a set of taskspec-

3/ 2L L.1/3

tively. Then N¢ (2 + D3 2 "0l DZDZ — 1%) Ny + K, wherex is the maximum num-

<2.33.

ber of tasks in a task group. Herz@833< DFT RM—FF <

134

In order to prove the above bound, we define a weighting function that maps the uti-

lization of tasks into the real interval [0, 1] as follows:
uw'a O<u<a 173 U
W(u = -10.
(v ¢ 1 asus<l J
Lemma 4.3: If a processor is assigned a number of taskst., ..., T, with uti-
1/3

, Wherea = ZHZ
o n L L

lizationsuy, u,, ..., u, , thenzi _,W(u) sl/a ,wherea 212" "-1Q

This lemma is true according to Lemma 3.1

Lemma 4.4: In the completed FRM-FF schedulelf a processor is assigned m

1/3

> 2 tasks andy " u; 2 202 %17, theny ™ W(y)=1.

Proof: Since zim:lui > 2521/3—15, Zlmz JW(u) 21 by the definition of
weighting function. |
Proof of Theorem 4.2 Let% = {1,, T,, ..., T,,} be a set omtasks, with their utili-
zationsuy, U,, ..., U, , respectively, am = Z”: (W(u) .
Suppose that among tie processors that are used B-RM-FF to schedule a
given set of tasksL of them haveZJ.W(Lﬁ) = 1-B, witlf; > 0, wherg ranges over
all tasks in processolamong the. processors. Let us divide these processors into two dif-
ferent classes:
(1) Processors to each of which only one task is assignen, dehote the number
of processors in this class.
(2) Processors to each of which two or more tasks are assigned.degiote the
number of processors in this class. According to Lemma 4.1, there are at most
K processors whose utilization in the schedule is less than or eqaaf to

VI 1H. Thereforen, =K.

22
Obviously,L =n; +n,. For each of the rebt—- L processorszj W (Lﬂ) > 1, where
j ranges over all tasks in a processor. There are two cases to consider with regard to
Case 1n, > X. For the processors in class (21“1: 4> n1(21/2— 1) according
to Lemma 4.1. Sinc&/(u) <1 by assumption, we havea. Thereforezinlz JW(u)

>ng (21/2— 1) /a. Moreovey according to Lemma 4.1, there are at nrastsks, the utili-

135

zation of each of which is less than or equalz%)/%—l). In the optimal assignment of
these tasks, the optimal numié&y of processors used cannot be less that?, i.e.,Ng =
n, / 2, since possibly witk exceptions, any three tasks among these tasks cannot be sched-
uled on one processor. Note that in the optimal schedule, the necessary and sufficient con-
dition must be used, i.e., both computation time and period of a task are taken into account.
Now we are ready to determine the relationship betweandN,,.
w=F" W) 2(N-L)+n 2Y?-1)/a=N-n;-n,+n; (2¥°-1) /a

=N- nl[l—HZl/z—lﬁ/a] -y

1/2

>N - 2l\|0[1— HZ —1H/a:| - Ny, sinceNg=ny / 2.

Sincew< Ny /aby Lemma 4.3,

L 1/2

No/a=N-2N[1-F2Y2-17a) —ny=N-2Ny[1- ">

— 1ﬁ/a:| - K

ThereforeN < |:2a +1- 2521/2— 15] N,/a + K, wherea = 2521/3— 1H.

Case 2n; < 2. ThenL =ny +n, < 3K, i.e., the number of processors Wih(u)
<1lis at most®. SincewsNp/aandw= 5 W(u) =N-L,

N<Ny/ a+L<Ny a+ 3.

If ny < 2k, then the upper bound is given by 4= 1.92. This implies that if the
number of processors on each of which one task is assigned is small 4.2«, then the
upper bound can be improved significantly, from 2.33 to 1.92.

Since the ternk is constant with respect dbin N < |:2a +1- ZH 2 15] No/a
+ K, it becomes negligible whey becomes laye. Therefore, the worst case performance
of FT-RM-FF is upper bounded by 2.33. According to Theorem 3.7, it is lower bounded by

2.283 wher = 1. Hence 2.288 U _ny_rr < 2.33, the bound of 2.33 is nearly tight.

4.3. Average Case Performance Evaluation
In order to gain some insight into the average case behavior of the new algorithm,
we use the same approach as we did in Section 3.9 to evaluate its performance.

Our simulation studies consist of two steps: (1) generate task sets with random dis-

136

tributions; (2) run the task sets through the algorithms to produce results. The output param-
eter for each algorithm is the number of processors used to accommodate a given set of
tasks.

The input data of all parameters for a task set are generated according to uniform
distribution. The periods of tasks are generated in the range §f<500. The number of
versions for each task is uniformly distributed in the range<ok;l< 5. The computation
time of each version is in the range of C;; < aT;, wherea is the maximum allowable
utilization of any version, i.eq = max ; (Ci,j/Ti) .

300+

] —— Total Load Ps

2704 - =~ Algorithm 1 .
1 -6 FT—=RM—FF o

240
2104
1807
1503

1204

Number of Processors

904

604

10 20 30 40 50 60 70 80 90 100
Number of Tasks

Figure 4.6: Performance of FT-RM-FF and Algorithm 1 (@ = 1.0)

The result is plotted in Figures 4.6 and 4.7 with two valuas @&ach data point
depicts the average value of 10 independently generated task sets with identical parameters.
In order to make comparisons, we also ran the same data through Algorithm 1, and the
results are plotted in the same figure.

The total utilization (load) of a task set is givenE?: 1 %ZK': ey E*/Ti , Which
can be considered as the minimum number of processors needed to execute the task set. It

is a lower bound on the number of processors to be computeRIMFHF outperforms

137

Algorithm 1 in all the experiments we have carried out. On the average, Algorithm 1 uses

130% extra processors compared to the lower bound, aRM-FF uses 40% extra pro-

cessors, which is a lot better than the 133% extra processors needed in the worst case.
Since usingzi”: 1 EZJK: 1Cij E{Ti as the lower bound for a scheduling algorithm

may be too pessimistic, we are interested in finding out the extra percent of processors that

is used by the FRM-FF algorithm to schedule any given task set. Will present some

more simulation data about fRM-FF along with the algorithm presented in the next chap-

ter.

300+
] —— Total Load
270 - - Algorithm 1

] 0 FT-RM—FF

2401
2104
1807
1503

120 -

Number of Processors

10 20 30 40 50 60 70 80 90 100
Number of Tasks

Figure 4.7: Performance of FT-RM-FF and Algorithm 1 @ = 0.5)

Chapter 5 Supporting Fault-Tolerance in Earliest-
Deadline-First Scheduling

“Nothing ventured, nothing gained.”
-- Anonymous

We now turn to the problem of scheduling a set of multiple-version periodic tasks
using the minimum number of processors such that the task deadlines are met by the EDF
algorithm on each individual processor. We state the problem as follows:

FT-EDFMS Problem: A set ofn tasksz = {1,,1,, ..., T} Iis given, where
T, = ((Cil, Cip oo CiKi), R, D, Ti) fori=1,2,...,n., Ci,Co oo CiKi are the com-
putation times of the; versions of task;. R;, D;, andT; are the release time, deadline, and
period of task;, respectivelyWhat is the minimum number of processors required to exe-
cute the task set such that the versions of each task are executéerentgfocessors and
all the task deadlines are met by EDF?

Liu and Layland prove that a set of periodic takks {1, T,, ..., T} with the
deadline of each task coinciding with its next arrival can be feasibly scheduled by EDF if
and only ifz;”: .G/ T =1 [46]. Note that the release time of each tRsldoes not déct
the schedulability of a set of periodic tasks. Theref@rendD; can be safely omitted in
scheduling tasks to processors.

Since 0 <C,/T, <land z:”: 1Ci/T; =1, we can treat the assignment of a set of
tasks to a single processor as packing a list of items into a bin with a unit size. The quantity

u; = C,/T, for a task (version) corresponds to the size of an item. In order to distinguish

138

139

task versions belonging to one task from those belonging to anathessign colors to
them such that versions belonging to one task share the sameé/edmns belonging to
different tasks have ddrent colors. Then items that have the same color cannot be
assigned to the same bin and the maximum number of items having the samecdloe is
number of colors is therefore equal to the number of tasks in a task set. The problem of
scheduling a set of multiple-version periodic tasks to processors can thus be reduced to the
following bin-packing problem

An item is associated with a color, and its size is no more than 1. There are an infi-
nite number of colors available. At mositems have the same cal®io items with the
same color are assigned to the same bin. Then given a number of colorful items, what is the
best way to pack the items into bins, such that the minimum number of bins is used?

With the exception ok = 1, this bin-packing problem has not been studied. When
K =1, the above bin-packing problem is reduced to the classical one-dimensional bin-pack-
ing problem, which has been extensively studied by a number of researchers for years. The
classical one-dimensional bin-packing problem arises in a wide range of applications, such
as computer memory allocation, packing trucks with a given weight limit, and assigning
commercials to stations breaks on television.

The above bin-packing problem also occurs in a number of applications, besides the
scheduling of tasks for fault-tolerance. For example, the problem of allocating a set of par-
allelized tasks to the minimum number of processors such that the makespan of the whole

schedule is bounded can also be reduced to this bin-packing problem.

5.1. The Design and Analysis of FT-EDF-First-Fit

Since this bin-packing problem is an NP-complete problem, we resort to heuristic
approach to solve it. ®/choose the First-Fit scheme for similar reason as outlined in the
previous chapters. The new algorithm is called FT-EDF-FF.

FT-EDF-FF: Let the bins be indexedBg B, ..., with each initially filled to level

140

zero. Given a list of colorful items, where the size of each item is no more than 1 and the
maximum number of items having the same coler, the items are assigned to bins in the
order they are given. In assigning an item to a bin, the smallest-indexed bin that does not
contain an item with the same color as the item being assigned and in which the item can
be fit, is selected to contain the item. An item is assigned to a new bin if it cannot be
assigned to any non-empty bin.

The main result is stated in the following theorem. Where there is no confusion, we
refer an item with a size &fsimply as itenb.

Theorem 5.1: For any list L of items f by, ..., b, FFEDF-FF(L) < 1.7L" +
2.1%, wherek is the maximum number of items having the same, ¢oldEDF-FF(L) is
the number of bins used by-EDF-FF to pack the list, and L is the minimum number
of bins used to pack the same list.

Before proving the theorem, we need to establish several lemmas.

Lemma 5.1: Suppose the maximum number of items having the same color is
Among all the bins to each of whiclerc > 1 items ae assigned, therare at mosk of
them, each of which is no more than c / (&)-ull.

Proof: The lemma is proven by contradiction. Suppose that there ar& bins

each of which is no more thar (c + 1) full. LetB,, By, ..., be suclk + 1 bins and

K+1

b;; be theth item that is assigned to i, for 1<si<k +1and I<j<n. Thenz -1 | J

<c/(c+1),forl<i<k + 1.

Let us look at the sizes of items assigned to the lastin, , among thex + 1

Mg

_1 K+1J <c/(c+1),there must

<l/c+1l)andz0{1,2...,n}.

bins. Since there arex citems in the birB, | ; andz

exist an itenb in the binB, _ ; such thab

K+1,2z

If not, thenzl Ly
Slncezjz1 i) th

K+1,2z

>c/(c+1)

<1/(c+1)+c/(c+1)=1forI<i<k, andb

K+1,2 K+1,2

cannot be assigned to the Binthere must exist one and only one itgframong the items

bi’j |j =1,2 ...,n} , that has the same color s, 17 does, forali=1,2 ...,K. In

141

other words, there are a totaliof 1 items having the same color as itepm , . This is
a contradiction to the assumption that the maximum number of items having the same color
is K. Therefore the lemma must be true. u

In the following, we define a weighting function &y (that maps the size of an item,
a, to a number between zero and one,W¢a): (0, 1] - (0, 1], as given in Figure 5.1. &/
call the value oM(a) the weight of itenm, and the sum of the weights of the items assigned
to a bin the weight of the bin. The weighting function is defined in such a way that with a
few exceptions, the weight of a bin in the completeeEPF-FF packing is equal to or

greater than 1, and the weight of a bin in the optimal packing is no greater than 1.7.

D(60()/5 O<a=<1l/6
[(90)/5-1/10 1/6<a<1/3
W(a) = D()
0(6a)/5+1/10 1/3<a<l1/2
D1 1/2<a<1
w()
A
1
7/10
1/2 /
1/5
| |
0 1/6 1/3 12 ™

Figure 5.1: Weighting FunctionW(a)

We first claim that for any bin in the optimal packing, the total weight of the bin is
no greater than 1.7, i.eZm= (W(b) <1.7.

Lemma 5.2: Let a bin be filled with itemis;, by, ..., by, Thenzim: 1W(b|) <
1.7

This lemma was proven by Johnson in [30].

In order to prove that, with a limited number of bins, the weight of each bin in the

142

completed FIEDF-FF packing is no less than one, we divide the bins into several groups
according to the levels they are filled to. Since a bin can be filled to a level from zero to one,
we instead divide the bins into groups according to the regions their levels fall into. A total
number of seven regions is defined: (0, 1/2], (1/2, 2/3], (2/3, 2/3 + 1/18), [2/3 + 1/18, 3/4),
[3/4, 4/5), [4/5, 5/6), and [5/6, 1]. For each region, the result is stated in a lemma. The proof
of the theorem is given at the end.

Lemma 5.3: Let a bin be filled with items;lz b, > ... = by, If Zlm: b =172,
then there are at mostbins with Zm: ,W(b) <landm=>1.

Proof: According to Lemma 5.1, among all bins to each of which1 items are
assigned, there are at masbf them, each of which is no more than 1/2 full. Therefore,
there are at most bins with Zm: W(h) <1 n

Lemma 5.4: Let a bin be filled with items; 2 b, > ... 2 b, If 1/2 < Zm: U
2/3, then there are at mostbins with z:m: 1W(b) <land m=2.

Proof: For 1/2 <Zim: b <2/3, the bins withzim: W(h) <1mustbe assigned
at least two items, i.em=> 2. Ifm= 1, therb; > 1/2 andzim: JW(b) 21.

According to Lemma 5.1, among all bins to each of whieh2 items are assigned,
there are at most of them, each of which is no more than 2/3 full. Therefore, there are at
mostk bins with Z|m= W(h) <1 m

For the region of (2/3, 2/3 + 1/18), there may be an infinite number of bins with
z;m: 1W(h) < 1. Howeverthe deficiency of weights created by these bins can be
bounded, as shown by the next lemma. Howemesrder to show that this deficiency can
indeed be bounded, we need a few definitions.

Definition 5.1: Let a binB; be filled with itemd,, b,, ..., b, The color of an item
b; is denoted bx(b;), and the set of colors of the items in aBjiis denoted by (B;). The
deficiencyd; of a binB; is defined ag§; = 1- Z.m: . ;. i-e., where the bin is filled up to the
level of 1—- &; in the completed FEDF-FF packing. For convenience in defining the

coarseness of a bin, we introduce an imaginary bin with a zero index, such that its coarse-

143

ness is zero, and its color set is emptyen the coarseness of a bin with an indeyelar
than zero is defined as
O = MaX(osj<in(x(B) nx(B)) =0)} 9 fOri=1.

Specifically the coarseness of a bin is equal to the maximum deficiammyng all
the bins that are ahead of the current bin and that do not share any color with the current
bin. Intuitively, the size of each item in a bin must bgéairthan the coarseness of the bin.
If a bin has a coarseness of zero, then either it is the first anesirlikely every bin ahead
of it shares at least one color with it.

Lemma 5.5: Let a bin Bwith coarseness; be filled with items{f=b, > ... > b,
and2/3< Zm: . b; < 3/4. Then there are at mogtbins with Zm: W(b) <landmz
3. If I is the number of bins wi/3 < Zm: lbi <2/3+1/18 Zm: lW(b) =1-B;, B>
0, and m =2, thenz: _,W(B) >I-9%/20.

Proof: According to Lemma 5.1, among all bins to each of which 3 items are

assigned, there are at madtins of them, each of which is no more than 3/4 full. For those

M b < 3/4. Therefore, there are at

bins withm = 3, there are at mostbins with 2/3 <zi - 1b;

mostk bins with z:m: W(h) <1

Accordingly we need only to focus our attention on the bins each of which is
assigned two items, i.em = 2. Furthermore, 1/2 b, = 1/3 andb, < 1/3, since 2/3 <
Si..b<23+118andy . W(h) <1

Claim 1: There are at mo$Bk) /2 such bins that have a coarseness of zero.

Let us consider the worst case configuration of th& BF-FF bin-packing where
the maximum number of bins with zero coarseness is achieved. Note that for these bins, a
bin with zero coarseness implies that all the bins ahead of it contain one of the two colors
it contains. This is because each of these bins has a deficiency of aH¢2& 1 1/18).

Recall that for the first of these bins, it contains exactly two colors. For the bins that

follows it, every one of them must contain at least one of its colors. Now we want to find

out the maximum number of bins that can possibly satisfy this constraintbb¢he num-

144

ber to be derived. Then it is apparent that 2k, because the maximum number of items
with the same color is.

Let c, andc, be the two colors in the first bin. Lgt be the number of bins that
immediately follow the first bin and share the same cojor iand be the number of bins
that immediately follow the first bin and share the calorif i, =i,, thenn<i, <k. Let
us assume thaj >i,. Letj >0 be the number of bins that immediately followithié bin
and have one colar,. Theni, 4 <Kk, since the number of bins containing catgrmust
be no more thar. Furthermorej, — i, +] < k. This is because the,(- i,) bins that
immediately follow the first, bins must share one color with thiins that immediately

follow the i, th bin with the other color being . This is illustrated in Figure 5.2.

i20fy\/i1'i20fx /jofy y
iy x|y y X . a bin with two items
al a al x X having colors x & y

Figure 5.2: Worst Case Configuration of Zero Coarseness

Sincei, <k, i; =i, +j<K,andi, +j <k, we conclude that< i, +j< (3k) /2.

Claim 2: zfz W(h) 21if ZZ: b z1-a

For any such bin with coarsenegs> 0, a; must be lager than 1/3- 1/18 (since
$ 7 .b <213+ 1/18).

Let b; andb, be the two items assigned to a Bjrandb; = b,. Thenb; > a; > 1/3
- 1/18 andb, > a; = 1/3 - 1/18, according to the definition of coarsenessg; # 1/3, then
b, > 1/3 andzf: W(b) 21/2+1/2=1.

If a; < 1/3, therby = 1/3, andb, < 1/3. Otherwiseh; + b, < 2/3, which contradicts
the assumption the§ 7_, b, > 2/3. Theny 7_ W (h) = 60y/5 + 1/10 + ®,/5 - 1/10 >
622: 10 /5 + 35> (6/5) « (I~ aj) + 30i/5 = 1 + 1/5- 30i/5 > 1, sinced, > aj anda; <
1/3.

For future reference, igizz W(b) =1-p andB; >0, then we must have

145

ZZ: b < 1-a; 1/3<by<1/2, and 1/6 4, < 1/3. ZZ: (W(bB) =®y/5+1/10 + &/
5-1/10 > ®,/5 + 9(2/3- b;)/5 = 6/5- 3pb4/5 = 9/10 sincdy; < 1/2. In other wordg3; < 1/
10.

Claim 3: Zm: 0y < 1-0;-5B/9if Z.m: (W(h) =1-p;withB;>0.

To prove this claim, ldy; andb, be the two items assigned to a Bjmvith by > b,.
Supposezim: 1bi =1-a;—-ywithy> 0. Then we can construct a bin filled with two items
0, ando, such that; + 0, =by + b, +y, ando; < 1/2 ando, < 1/2. ThenWM(o,) + W(05)
> 1. Since the slope of the weighting function W in the range of (0, 1/2] does not exceed 9/
5, thereforeMo,) + W(05) < Zm: 1W(b) + 9y/5. In other words, £ 1-[3; + 9y/5. 3/
9<y. Zim: b < 1-0;-5B/9.

Suppose that in the completed EDF-FF packing, leitbe the number of bins with
z;m: W(b) < 1. Among thd bins, IetBll, B'2, B'h be the bins that have non-zero
coarseness. If we group these bins accordirg Iﬂé}) N x(B}) = 0 for any pair of bins in
a group, then there are at m@8k) / 2 different groups, according to Claim litkh each
group, letn be the number of bins in such group. Tler q; if i <j. Sincea; = o; _, +
5B,_,/9, for 1<isn, thenS'21B <9/5+3 1, (a;-0;_;) =9/5+¢,-0)<9/5¢
(2/3 + 1/18- 2/3) = 1/10. Sinc@, < 1/10, we havezi”: . B; = 2/10. Thereforgih: B =
(3k) /2 «2/10 = %/10.

For the (3k) /2 bins with zero coarseness, suppose that therg@=ar3k) /2 of
them, each withzim: 1W(b|) = 1- (3 wheref3; > 0. According to the reasoning above,
Z?: 1B; < (3K) /2 + 1/10 = %/20,

Therefore,\ _ | B; < 3/10 + /20 = %/20, wherd = h +g.

z: _,W(B) >I-9/20. n

Lemma 5.6: Among all the bins filled to the level of 2/3 + 1ﬂ{im: b <314,
there are at most of them Withzim: 1W(h) <landm3.

Proof: Let a binB; be filled with item$, > b, > ... 2 b,,and 2/3 + 1/1& Zlmz b

< 3/4.

146

If m=1, therb; > 2/3 + 1/18 > 1/2.2{": JW(b) 21,

If m= 2, there are three cases to consider:

(1) If by > 1/2, thenzim: JW(b) 21.

(2) If 1/3 <by; < 1/2 and 1/3 4, < 1/2, thenzim: W(h) 21/2+1/2=1.

(3) If 1/3 <by < 1/2 and 1/6 b, < 1/3, thenzim: JW(h) = 6by/5+1/10 + 9(2/3

+1/18-b;)/5-1/10 = 13/10- 3b;/5= 1.

Obviously the bins withzim: 1W(b) <1 must be assigned at least three items,
i.e., m= 3. According to Lemma 5.1, among all bins to each of whch 3 items are
assigned, there are at megiins of them, each of which is no more than 3/4 full. Therefore,
there are at most bins with Zm: W(b) <1. »

Lemma 5.7: Among all the bins filled to the lev&/¥ < Zm: by <4/5, there are
at most of them Withzim: (W(h) <land m=4.
Proof: Let a binB; be filled with item$, > b, > ... > b,,and 3/4& z!m: 0 <4/5.

If mis equal to 1 and 2, then we can prove, similarly to the proof of Lemma 5.6, that
Zim: W(h) =1.

If m= 3, there are seven cases to consider:

(1) If by > 1/2, thenzim: JW(b) 21.

(2) If 1/3 <by;<1/2 and 1/3 v, < 1/2, thenzim: (W(b) 21/2+1/2=1.

(3) If 1/3 <by < 1/2, 1/6 <b, < 1/3, and 1/6 b3 < 1/3, thenzim: W(b) =By/5
+1/10 + ®,/5 - 1/10 + D4/5 - 1/102 6[3/4 - (b, + by)]/5 + 9 (b, + bg)/5 - 1/
10 = 30, + b3)/5 + 4/5 > 1, sincé, + by > 1/3.

(4) If 1/3 <by < 1/2, 1/6 <b, < 1/3, andbz < 1/6, thenzim: JW(b) =6/5+1/
10 + S,/5 - 1/10 + tg/5 = 9,/5 + 6(3/4- by)/5 = D,/5 +9/10 > 1.

(5) If 1/3 <by £ 1/2 andb, < 1/6, thenzim: JW(h) =By/5+1/10 + &,/5 + oqf
5= G(Zim: ,bi)5 + 1/1C> (6/5) « (3/4) + 1/10 = 1.

(6) If 1/6 <by < 1/3, 1/6 <b, < 1/3, and 1/6 <53 < 1/3, thenzim: W(b) =
9(2[”: ,b;)/5—3/10= (9/5) * (3/4)- 3/10 > 1.

147

(7) If 1/6 <b; < 1/3, 1/6 <b, < 1/3, andb; < 1/6, thenzim: (W(b) =8/5-1
10 + 9o/5 - 1/10 + @4/5= 9(3/4- ba)/5 + Bog/5 - 2/10 > 23/20- 3bs/5 > 1.
Obviously the bins withzim: 1W(b) <1 mustbe assigned at least four items, i.e.,
m= 4. According to Lemma 5.1, among all bins to each of wimety items are assigned,
there are at most bins of them, each of which is no more than 4/5 full. Therefore, there
are at mosk bins with Zm: W(h) <1 »
Lemma 5.8: Among all the bins filled to the level 45{5zim: b <5/6, thee are
at most of them Withzim: W(b) <landms.
Proof: Let a binB; be filled with itemd, > b, > ... 2 b,,, and 4/%< Zm: ,0; <5/6.
If mis equal to 1, 2, and 3, then we can prove, similarly to the proof of Lemma 5.7,
thatzim: W(h) =1.
If m= 4, there are eight cases to consider:
(1) If by > 1/2, thenzim: JW(b) 21.
(2) If 1/3 <by;<1/2 and 1/3 v, < 1/2, thenzmz (W(b) 212+1/2=1.
(3) If 1/3 <by < 1/2, 1/6 <b, < 1/3, and 1/6 5 < 1/3, thenzim: (W(b) =6by/5
+1/10 + ®,/5 - 1/10 + D4/5 - 1/102 6[4/5- (b, + by)]/5 + 9 (b, + bg)/5 — 1/
10 = 3, + b3)/5 + 43/50 > 1, sinch, + by > 1/3.
(4) If 1/3 <by < 1/2, 1/6 <b, < 1/3, andby < 1/6, thenzmz JW(Db) =6by/5+1/
10 + D,/5 - 1/10 + 6b3 + by)/5= /5 + 6(4/5— by)/5 = J,/5 +24/25 > 1.
(5) If 1/3 <b; < 1/2 andb, < 1/6, thenzim: (W(b) =By/5+1/10 + 6lf + b3 +
by)/5 = 6(2[”: ,bi)/5 + 1/1C= (6/5) * (4/5) + 1/10 > 1.
(6) If 1/6 <by < 1/3, 1/6 <b, < 1/3, 1/6 <bg < 1/3, and 1/6 <, < 1/3, then
zim: W(h) = 9(2[”: by)/5=4/10= (9/5) * (4/5)- 4/10 > 1.
(7) If 1/6 <b; < 1/3, 1/6 <b, < 1/3 andoz < 1/6, thenzim: W(b) =B/5-1/10
+ 9%,/5 - 1/10 + 603 + b,)/5= 94/5 — (b + by)]/5 + bz + by)/5 - 2/10 > 31/
25-3(bg + by)/5 > 1.
(8) If 1/6 <by < 1/3 andb, < 1/6, thenzim: (W(b) =B8y/5-1/10+6b, + b3+

148

bs)/5 = 9[4/5 - (b, + bz + by)]/5 + &by, + by + by)/5 - 1/10 > 67/50- 3(b, +
bs + by)/5 > 1, sinced, + by + by < 1/2.

Obviously the bins withzim: 1W(B) <1 mustbe assigned at least five items, i.e.,
m= 5. According to Lemma 5.1, among all bins to each of wimetb items are assigned,
there are at most of them, each of which is no more than 5/6 full. Therefore, there are at
mostk bins with z:m: W(h) <1 »

Lemma 5.9: Let a bin B be filled with items = b, > ... =2 b, If Zm: b 25/

6, thenzim: W(h) =1.

Proof: Since W) / 3 = 6/5 in the range of 8 B < 1/2 and W) = 1 whenp > 1/

2, we havezimz W(b) 25/6+6/5=1. n

Proof of Theorem 5.1 Suppose that in the final FHDF-FFpacking, there arm
bins By, By, ..., By, each of which receives at least one item, @JCW(BJ) < 1. Let
ZjW(B) =1-pj withpj>0forlsjsm

Since our goal is to prove that Il.7Z W = FT-EDF-FF() — Zlmz 1[3i , we need to
bound the quantit}y . | B; .

According to Lemma 5.8, izim: 1bi (I [4/5, 5/6), there are at mastins withm
>5 andz:m: W(b) <1.Letl be the number of bins witly ;W (B) =1-p; and@; >0
for 1< <. z: _ B SK(1-4/5+ 6/5) =/25.

According to Lemma 5.7, izim: 1bi [1[3/4, 4/5), there are at mastins withm
>4 andz:m: W(b) <1.Letl be the number of bins witly ;W (B) =1-p; and@; >0
for 1< <. z: _ B <K(1-3/4+ 6/5) =/10.

According to Lemma 5.5 and Lemma 5.621:“: 1bi ([2/3, 3/4), then there are at
mostk bins withm> 3 andzim: (W(h) <1.Letlbe the number of bins witZW(BJ)
= 1- B andB; > 0 for 1< 1 <. Z: _ By <K(1-2/3 + 6/5) /5.

If Zm: b O (2/3, 2/3 + 1/18), then ldtbe the number of bins witim = 2 and
Zizz (W(h) <1.Letl be the number of such bins wiEjW(B]) =1-B;andB; >0.
According to Lemma 552: _ 1B = 9/20.

149

According to Lemma 5.4, izim: 1bi [0(1/2, 2/3], then there are at madbins with

m= 2 andzim: 1W(h) <1.Letbe the number of bins witEjW(BJ) =1~ B andp;
>0fori<l<k. 31 B,

< K(L - 1/2 « 6/5) =2k/5.

m
i=1

m=1 andzim: 1W(b) <1.Letbe the number of bins witz.W(BJ) =1- B andp;

According to Lemma 5.3, iE b, (0, 1/2], then there are at masbins with
>0 forl<l<k. Thenz: _ B =k

Therefore,zim: 1By SK(1+2/5+9/20 + 1/5 + 1/10 + 1/25) = 219

In summary, FT-EDF-FE) < 1.7L" + 2.1%. »

We conjecture that the constant can be further lowered from 2.19 to 1, if a better
weighting function can be found. Wher= 1, the problem becomes the well-known clas-
sical bin-packing problem. Since the ratio 1.7 is nfecaéd by the value of, our result
therefore subsumes the previous known result [30]. Also, whenl, examples that
achieve the bound of 1.7 has been given in [30]. Since the termig.a%Tonstant, it dis-
appears when the optimal number of Hinsapproaches infinityTherefore, we conclude

that the bound is asymptotically tight.

5.2. The Average Case Performance Evaluation

In order to gain some insight into the average case behavior of the new algorithm,
we use the same approach as we did in Section 3.9 to evaluate its performance.

Our simulation studies consist of two steps: (1) generate task sets with random dis-
tributions; (2) run the task sets through the algorithms to produce results. For reasons soon
to be made cleawe use two methodologies to generate task sets with random characteris-
tics. The output parameter for each algorithm is the number of processors used to accom-
modate a given set of tasks.

In the first studythe input data of all parameters for a task set are generated accord-
ing to uniform distribution, except the number of tasks a task set has. The periods of tasks

are generated in the range &f T; < 500. The number of versions for each task is uniformly

150

distributed in the range ofdk; < 5. The computation time of each version is in the range
of 1< G < aT;, wherea is the maximum allowable utilization of any version, ice5
max ; (Ci’j/Ti) .

The result is plotted in Figures 5.3 and 5.4 with two values. @ach data point
depicts the average value of 10 independently generated task sets with identical parameters.
In order to make comparisons, we also ran the same data through Algorithm 1, and the
results are plotted in the same figure. Observe that Algorithm 1 can be readily modified to
allocate multiple-version periodic tasks for EDF scheduling by replacing the RM condition
with the EDF condition. \& hereatfter refer to the latter algorithmEd3F-Algorithm land
the former aRRM-Algorithm 1 The performance of both allocation schemes under EDF
condition is consistently better than that under RM condition. This is expected since the
total utilization for each processor is boundemﬁ}zl/n— 1H under RM condition, and 1

under the EDF condition. For RM-FF and FTIEDF-FF, their performance is consistently

better than that of Algorithm 1 under RM and EDF conditions, respectively.

300+

] —— Total Load P
2704 - - RM—Algorithm 1 s
] -0~ EDF—Algorithm 1 PR
]-e- FT-RM—FF LT
2409+ FT-EDF—FF ®7T T

210 o
1804 o

1504

Number of Processors

904 el

60-

10 20 30 40 50 60 70 80 90 100
Number of Tasks

Figure 5.3: Performance Comparison of the Four Algorithm ¢ = 1.0)

The total utilization (load) of a task set is givenE’f: 1 EZK: 1Cij E*/Ti , which

151

3004

] —— Total Load
270 - +- RM—Algorithm 1
] o EDF—=Algorithm 1
]-o-FT—RM—FF
2404 .+ FT—EDF—FF

2104
1804
1504 4

120 e

Number of Processors

10 20 30 4,'\?umber5'% I Sek'g 70 80 90 100

Figure 5.4: Performance Comparison of the Four Algorithm ¢ = 0.5)
can be considered as the minimum number of processors needed to execute the task set. It
is a lower bound on the number of processors to be computed. For RM-Algorithm 1, the
number of processors used to execute a task set is more than twice its total utilization in
some cases. This comparison may be overly pessimistic, since the optimal number of pro-
cessors may diér from the total utilization greatly in some cases, and little in other cases.
Therefore, using the total utilization of the task set as a baseline performance may not cap-
ture the whole picture. The ideal solution would be to find the optimal number of processors
for any given task set. Howevehis is usually deemed to be likely requiring exponential
time with respect to the number of tasks using existing techniques, since the scheduling
problem is NP-complete.

This observation leads us to the employment of a new methoddJogher this
methodologya task set is generated randomly with the constraint that in the optimal sched-
uling, it fully utilizes a known number of processors, using either the RM or EDF algo-

rithm. In other words, givem processors, and the average number of task versions to be

run on each processave generate a set of tasks that fully utilimegrocessors, and at the

152

same time, satisfies the timing and fault-tolerant constraints of the tasks. This is accom-
plished in the following steps:

(1) M arrays of random numbers are generated. The sizes of the arrays are uniformly
generated, with a mean value corresponding to the average number of versions to be run on
a processor.

(2) Each item in an array is divided by the sum of all items in its array to obtain a
number between 0 and 1, which corresponds to the utilization of a version.

(3) For each task, the numbers of the versioihéas are generated, confirming to
uniform distribution, with a mean corresponding to the average number of versions per
task. Therv numbers are randomly selected from itiharrays of numbers to be the utili-
zations of the versions. This process is repeated until all the items im &neays are
picked.

Using this methodology to generate task sets, the performance of the four algo-

rithms is plotted in Figure 5.5. Each data point in this figure (and subsequent figures) is the

1504 —— RM—AIgorithm 1
]--+- EDF—=Algorithm 1
1353 0 FT-RM—FF
q--e-- FT-EDF—FF
1204
£ 1054
&]
= 904
- 1
= 754
=]
1 e
g 607 NN 1
B s PR e
s é """ "’2/,*’ """" (ST '\"\8"/"/ Qerrrnrnnnnas O rrrrnnnnnnn D rrrnrnanaas Orrrrarnnnnss O errrarannan
30+~~~
154
[et
o ‘7 '''''' 'T """""" o > = n LIy ——mmio P P -©
10 20 30 40 50 60 70 80 90 100

Number of Processors

Figure 5.5: Performance Comparison of the Four Algorithm ¢ = 1.0)

153

average value of 10 independently generated task sets with identical par@mnetber x-

axis, the number of processors is the optimal nurhieof processors required to execute

a task set. On the y-axis, the extra percentage of processors is defiNgd-aN{) / N,

whereN, is the number of processors required by a heuristic algorithm A to allocate the
same task set. Though the performance of the algorithms is consistent as shown in Figures
5.3 and 5.4, we have a better idea of what percentage of extra processors is needed for each
algorithm for a given task set.

For some heuristics, their performance is highly sensitive to the order of input data,
and hence they are referred to as having unstable performamege\&so interested in the
stability of our heuristics. ¥/ consider two options: (1) For each task, its versions are
assigned to processors according to thgelsircomputation time first strate¢®) The tasks
are assigned to processors in the order of decreasing utilization. For this to work, the task
set must be sorted first. Apparently, there are four ways to arrange the input data:

US: The task set is UnSorted as it is randomly generated.

VD: \Versions of each task are sorted in Decreasing order of computation time.

TD: Tasks are sorted in the order of Decreasing utilization (TD).

VD-TD: Versions of each task are sorted in Decreasing order of computation time

(VD), and Tasks are sorted in the order of Decreasing utilization (TD). Note
that the utilization of a task is the sum of the utilizations of all its versions

For the same set of inputs that produced the results shown in Figure 5.5, the perfor-
mance of RM-Algorithm 1 is shown in Figure 5.6. The improvement of performance is
quite significant, when tasks are assigned to processors in the order of decreasing task uti-
lization. What is a little bit surprising is that the order in which the versions of a task is
assigned to processors does not affect the performance very much.

For the same set of inputs that produced the results shown in Figure 5.5, the perfor-
mance of FIRM-FF and FTEDF-FF is shown in Figures 5.7 and 5.8. Note that both FT

RM-FF and FIEDF-FF are not much sensitive to the order in which tasks are assigned to

154

1503

1354

1207

1054

©
?

754

so4——

Percentage of Extra Processors

454
304

154

10 20 30 40 50 60 70 80 90 100
Number of Processors

Figure 5.6: Performance of RM-Algorithm 1

processors and the order In which versions ot a task are assigned to processors.

In summary our simulation studies show that-RM-FF and FIEDF-FF are
insensitive to the order of assigning tasks to processors and to the order of assigning ver-
sions of a task to processors-RWM-FF and FTIEDF-FF outperform RM-Algorithm 1 and
EDF-Algorithm 1. The performance of RM-FF is quite good. The 40% extra processors
is almost inevitable because of the schedulability conditl@llml/n - 1H. The performance
of FT-EDF-FF is neapptimal, since it usually requires less than 10% extra processors. The
order of assigning tasks to processofsa$ the performance of Algorithm 1 significantly
The superiority of FRM-FF and FIEDF-FF is reflected not only in their out-perfor-

mance over Algorithm,lbut most importantly, they can be used as on-line algorithms.

155

409
36
] —_ o ——0
1 —e—
32
. 287
=]
£ 249
=]
£ 204
= 164
S 164
£]
g 12
&2]
8
] —— US
] -—- VD
4: --0--- TD
o —-e--VD—TD
10 20 30 40 50 60 70 80 90 100
Number of Processors
Figure 5.7: Performance of FT-RM-FF with Sorted Input
40-
] —— US
36 -—- VD
] o TD
32 —-e-- VD—TD
., 28
S 1
£ 24
=]
o 4
£ 204
= 164
g 121
R
8
4]
] — I
] e — @ ——=
R e ———
10 20 30 40 50 60 70 80 90 100

Number of Processors

Figure 5.8: Performance of FT-EDF-FF with Sorted Input

Chapter 6 Non-preemptive Scheduling of Periodic
Tasks for Fault-Tolerance

“Don’t find fault, find a remedy.”
-- Henry Ford, 1863-1947

In this chapterwe study the problem of scheduling a set of periodic tasks non-pre-
emptively on a multiprocessor for fault-tolerance. The scheduling problem is formulated in
the similar manner as its preemptive counterpart. Howéverproblem of non-preemp-
tively scheduling a set of periodic tasks on a multiprocessor is a méichltigne. Jeffay,

Stanat and Martel [28] have shown that a set of periodic tasks may not be schedulable non-
preemptively on a single processeven if its total CPU utilization is very small, i.e., close

to zero. It is currently not at all clear whether a reasonalilyiexit heuristic exists for
scheduling a set of periodic tasks non-preemptively on a single processor system. The fact
that multiple processors are involved further complicates the scheduling problem, let alone
the additional requirement of guaranteeing task deadlines even in the presence of processor
failures. In this thesis, we will focus on a special case of the scheduling problem.

In the following, we consider the tolerance of processor failures using a simple soft-
ware redundance scheme. This is a special case of the TFT scheduling problem. The tasks
are independent and non-preemptive. Each task has a primary copy and a backamdcopy
the scheduling goal is to achieve 1-TFT for processor failure, i.e., the tolerance of one arbi-
trary processor failure. This case of the TFT problem is chosen to be studied, because it is

the simplest one.

156

157

The task redundancy scheme specified in the above case actually corresponds to the
primary-backup copy approach or recovery block approach. Primary-backup copy
approach requires the multiple implementation of a specification [66]. The first implemen-
tation is called the primary copgnd the other implementations are called the backup cop-
ies. The primary and if necessgitye backup copies, execute in series. If the primary copy
fails, one of the backup copies is switched in to perform the computation again. This pro-
cess is repeated until that either correct results are produced or all the backup copies are
exhausted. Here we consider a special case of the primary-backup copy approach where
each task has one backup copy omhe following Lemmas [51] guarantee that having one
backup copy for each task is sufficient for the tolerance of one arbitrary processor failure.

Lemma 6.1: In order to tolerate one or merpiocessor failues and guarantee
that the deadline of a task is met using the primary-backup copgagprthe computation
time of the task must be less than or equal to half of the period of the task, assuming that
the deadline coincides with the period.

Lemma 6.2: One arbitrary pocessor failue is tolerated and the deadlines of
tasks ae met, if and only if the primary copy and the backup copy of each task is scheduled
on two different processors and there is no overlapping in time between their executions.

An obvious implication of Lemma 6.1 is that for each task, if the computation time
of the task is layer than half of its period, it is impossible to find a schedule which is 1-
TFT. This is due to the observation that if the primary copy fails at the very end, there will
not be enough time left to complete a backup copy, assuming that the backup copy has the
same computation time requirement as the primary.cbpig fact is used implicitly in
many situations throughout this chapter.

In scheduling the backup copies, we have the options of allowing them to be over-
lapped or forbidding them from overlapping. Here we first consider the case where the
backup copies are not allowed to be overlapped with each atigethen the case where

the backup copies are allowed to be overlapped.

158

6.1. Non-overlapping of Backup Copies

What we mean by disallowing them to be overlapped is that backup copies of the
tasks whose primary copies are scheduled on different processors are not allowed to over-
lap in time of their executions on a proces$ar obvious reasons, backup copies of the
tasks whose primary copies are scheduled on the same processor must not be scheduled to
overlap in time of their executions on a procesdtiten the given number of processors is
two, there apparently exists an optimal algorithm to schedule a set of tasks having a com-
mon deadline so as to tolerate one arbitrary processor failure. HoWaveore than two
processors, the scheduling problem is NP-complete, even when the tasks have the same

deadline.

6.1.1. Complexity of the Scheduling Problem

We first define the problem and then prove that it is NP-complete.

Task Sequencing Using Primary-Backup with a Common Deadline

Instance SetZ of tasks, number of processans 3, for each task[1 % , one pri-
mary copyP (t) and one backup copg$ (t) , a lengthl (t) O z" (the set of natural num-
bers), a common release tinel z", a common deadlina(t) = DO Z", and
I (P(t)) =1(G(t)) =1(t) . No overlapping of backup copies is allowed.

Question Is there am-processor schedute farthat is 1-TFTi.e., for each task
t0x, o, (P(1) +1(P(t)) <0;(G()) , ando; (G(t)) +(G(t)) <D ,wherezj i
andj designate the index of processors.

Theorem 6.1: Task Sequencing Using Primary-Backup with a Common Dead-
line is NP-complete.

Proof: It is suficient to prove that this scheduling problem is NP-complete even in
the case ofn =3. It is easy to verify that this problem is in.N#e next transform theMR-

TITION problem, an NP-complete problem, to the scheduling problem.

The PARTITION problem [23] is stated as follows: given a finite set A and a “size”

159

s(a O Z" for each alOA, is there a subseA A such that zaD A,s(a =
za OA-A s(a)?

Given an instance of A §a,,a,, ...,a,} of the ARTITION problem, we con-
struct a task seéf using the primary-backup copy approach to run on three processors for
the tolerance of a single arbitrary processor failure, suck itet be scheduled if and only
if there is a solution to the PARTITION probleBhconsists ofi +1 tasks as follows:

r(t) =0,I(t) =a,d(t) = 2B,
wheret O {1,,T,, ..., T .} ,leisnai = B (this can be assumed without loss of gener-
ality); and one other tagk

r(B) =0,1(B) =B,d(B) = 2B.

It is easy to see that this transformation can be constructed in polynomial time.
What we need to show is that the Agan be partitioned into two sebs andS, such that
ZaD Sls(a) = ZaD %s(a) andS, +S, = A, if and only if the task set can be scheduled.

First, suppose that A can be partitioned into two s&tsand S, such that
ZaD Sis(a) = ZaD %s(a) =BandS, +S, = A. Then we schedule, for eael] S,
the primary copy of the task with | (a) =a on processor 2 anywhere between time inter-
val [0, B), and its backup copy on processor 3 anywhere between time ing&r8).[For
eachtaslkal S, with (a) =, the primary copy of task is scheduled on processor 3
anywhere between time interval, [B) and its backup copy on processor 1 anywhere
between time intervaB, 2B). Therefore, ther2copies of ther tasks can be scheduled on
processors satisfying the condition setin Lemma 6.2. Fofta& primary copy is sched-
uled on processor 1 during time periodB) and its backup copy is scheduled on processor
2 between time periodB[2B), as shown in Figure 6.1. Thus, the tasks=tn be scheduled
on three processors such that the schedule is 1-TFT.

Converselyif the task sek is scheduled on three processors such that the schedule
is 1-TFT, we claim that for all tasks scheduled between the time intervB) § processor

2, the sum of the tasks’ length$Bsi.e., Zam Sls(a) = B. To be able to tolerate one arbi-

160

0 B 2B
processor 1 P@®) G(s)
processor 2 P (Sl) G(@)
processor 3 P (SZ) G(S)

Figure 6.1: Mapping from PARTITION to Task Sequencing

trary processor failure, the primary copy of a task and its backup copy must be scheduled
on two diferent processors and their execution time must not be overlapped. This later
requirement is guaranteed by the primary-backup copy approach. Since the common dead-
line is B and the total task execution time isR(2 B) = 6B, any 1-TFT schedule should

have no idle time during the time interval [8)2n all three processors. Therefore, any 1-
TFT schedule must be equivalent to the schedule shown in Figure 6.2, if processors are
properly renamed and the primary copies are moved in front of all the backup copies for
each processor. Shiliig the primary copies in front of all the backup copies will not vio-

late any scheduling constraint, since primary copies can start earlier than scheduled and
backup copies can start later than scheduled, as long as the release time and the deadline
constraints are not violated. For processor 3, exactly one eipgr primary or backup, of

any task among the tasks must be scheduled on it. This is because any 1-TFT schedule
for the three processor requires that no idle time exists on any pro@ssdne primary

copy of a task and its backup copy must never be scheduled on the same prblcessor

fore, we let all the tasks scheduled on processor 2 between time inteBabfthe set

S,, and the tasks on processor 1 between time inteyaB) be the se§, . We then have

ZaD %s(a = ZaD SZs(a) andS, +S, = A. e have solved theARTITION problem.

The scheduling problem is therefore NP-complete. |

6.1.2. Al-Timely-Fault-TolerantScheduling Algorithm

Since the scheduling problem is NP-complete, a heuristic scheduling algorithm is

presented in this section to obtain approximate solution.

161

0 B 2B
processor 1 P() P(Ub) G(Uy
processor 2 P(Uy) G()
processor 3 P(Up G(Uyp)

Figure 6.2: Mapping from Task Sequencing to PARTITION

In scheduling a set ot tasks mwrprocessors, the algorithm must be designed to min-
imize the schedule length on each processor such that the task set can be successfully
scheduled, and at the meantime, to prevent the overlapping of the primary copy of a task
and its backup copyrhis scheduling problem, at a first glance, seems very much to resem-
ble the scheduling problem of minimizing the makespan of a schedule in a multiprocessor
system. Since the scheduling to minimize the makespan of a schedule is NP-complete, sev-
eral scheduling heuristics have been developed, among which LPT [25] antIifMUL
[14] are notable ones. Howeydéhere are two key issues that set this scheduling problem
apart from the one to minimize the makespan: the requirement of scheduling primary cop-
ies as well as backup copies, and the requirement that the primary copy of a task cannot
overlap its backup copy, and backup copies of different tasks cannot overlap each other in
execution eitheThe MULTIFIT algorithm, though out-performing LPT in the worst cases,
is not easily adapted to solve the 1-TFT scheduling problem. The LPT algorithm is there-
fore adopted here to serve as the base algorithm upon which a scheduling heuristic is devel-
oped.

The algorithm starts by first scheduling the primary copies omtlpeocessors
using the LPT algorithm. It then schedules the backup copies, by following several rules
described belowsuch that the primary copy of a task and its backup copy are scheduled on
different processors, and the backup copies of those tasks, whose primary copies are sched-
uled on a processor, are also scheduled on one processor. The algorithm is given in Figure

6.3. Note thab is the common deadline of the tasks.

162

NOV (Input: Task Sek, m, 1-TFT, Output:success, schedyle

(1) Sort the tasks in order of non- increasing computation times and
rename them . Compute Q= Zn_ 1| (T,). i
Q> (mD) /2 or (1T1) > D/ 2 then report that the task set can-
not be scheduled on m processors by this algorithm such that a
1-TFT schedule can be produced. Otherwise, go to Step 2.

(2)Applythe LPTalgorithmto schedulethetasksetonmprocessors.

(3) Sortthe primary schedules for the m processors in order of non-
increasing schedule lengths. Duplicate the primary schedules to
form m backup schedules and append them at the end of the pri-
mary schedules (Figure 6.4a).

(4) Swap the backup schedules according to the swapping rules
def ined below (Figure 6.4b). Shift the backup schedules to
obtain the mixed schedules according to the shifting rules
defined below (Figure 6.4c).

(5) Find the maximum length among the mixed schedules and compare
itto D. If it is longer than D, the task set cannot be sched-
uled. Otherwise, the mixed schedules generated in Step 4 are
the schedules which are 1-TFT as a whole.

Figure 6.3: Algorithm NOV

D/2 D/2
m processorg —_—
primary schedules appended backup schedules primary schedules swapped backup schedules
(a) Schedules after Appending (b) Schedules after Swapping
D/2
I I I
m processors primary backup idle

sorted primary schedule shifted backup schedule

(c) Schedules after Shifting
Figure 6.4: Scheduling Process of NOV

The functioning of the algorithm is illustrated by the following simple example.
Example: Using NOV to schedule the following task set on four proces&ors:
{1, 1 td, {I(T) |i =1 ..,7 ={10088 7 6 6 3 ,r =0, andD = 25. First,

the LPT algorithm is used to schedule the primary copies of the tasks on four processors,

163

25

processor 1 10 | = EE
processor 2 8 3 | | _
processor 3 8 6 [primary backup idle
processor 4 7 [6 |

Figure 6.5: Schedule Generated by LPT

5

processor 1 8 | 6 | 10
processor 2 7 | 6 | 8 [3 I
processor 3 8 [3 | 7 6 primary backup idle
processor 4 10 | 8 6

Figure 6.6: Schedule Generated after Swapping and Appending

as shown by Figure 6.5. Second, the four primary schedules are sorted in non-increasing
order Third, the primary schedules are duplicated to form the backup schedules, which are
then appended to the back of the primary schedules. L #s#iybackup schedules are
swapped and shifted appropriatelne final result is shown in Figure 6.6. Note that if the
number of processors available is three, the task set cannot be scheduled by this algorithm.
The reason to sort the primary schedules before appending is to minimize the max-
imum length of the mixed schedule along with the swapping and shifting processes in the
later stages. The swapping process makes sure that the backup copy of a task is not sched-
uled on the same processor as its primary copy. The purpose of shifting is to minimize the
finishing time of the mixed schedule as well as to avoid the overlapping of backup copies
among diferent tasks. @ elaborate on the swapping and shifting processes, we formally
define the swapping and shifting rules.
Swapping Rules
(1) If the number of processarsis even, the longest backup schedule is appended
behind the shortest primary schedule, and the second longest backup schedule
is appended behind the second shortest primary schedule, and so forth.
(2) If mis odd, then the backup schedules of the three central processors are
appended in acyclic fashion. The three central processors are the ones whose
positions are in the middle. The backup schedules of the rest of the processors

are swapped by following swapping rule (1).

164

To define the shifting rules, we need the following definitions.

Definition 6.1: Two processors are called twin processors if backup copies of the
tasks in the primary schedule on a processor are appended after the primary schedule of the
other processoi he two schedules on twin processors are called twin schedules. For exam-
ple, in Figure 6.6, processors 1 and 4 are twin processors, so are processors 2 and 3.

Definition 6.2: For the primary schedule of a proces'scbg (i) is defined as its pri-
mary schedule Iengtthq (i) is defined as the computation time of the first task in the pri-
mary schedule. ObviousIL{0 (i) = Iq (i) . ThoughlIO (i) denotes the length of a schedule,
it will also be used to denote the corresponding time interval whose Ieng(th)is

Shifting Rules.

Suppose the backup schedule of processoappended behind the primary sched-
ule of processor .

Q) If Ip(i) < D/2 andlp(j) < D/2, then the tasks it‘b(j) are shifted together

ahead of time such that the starting time of the first taslkp m is

max{ lp(i),l ()} . If Ip(j) Z Iq(j) , the starting time ofthefirsttasklgw(j)

can be moved td)p (1) and the rest of the backup copies can be moved ahead
accordingly.

(2) Otherwise, the tasks Ira (j) are shifted together ahead of time such that the

starting time of the first task Ira () ig(i)

(3) Apply the above rules to every schedule on the processors.

The schedule thus generated by NOV is 1-sIshown by the following theorem.

Theorem 6.2: NOV produces an 1-TFT schedule.

Proof: Since any primary copy of a task and its backup copy are scheduled on two
different processors, as guaranteed by the Swapping Rules, we need only show that there
is no overlapping between the primary copy of a task and its backupioygusly, there
is no overlapping between the primary copy of a task and its backup copy after the swap-

ping process, but before the shifting process. What we need to show is that no overlapping

165

occurs when the shifting is carried out. There are four cases to consider.

Case 1:IIO (i) =D/2 andlp(j) < D/2. Since the starting time for the first task in
Ip(j) is max{ Ip(i) , Ip(j)} , there is no overlapping between the primary copies of the
task scheduled on procesgoand their corresponding backup copies on procdsgbr
IID (j) # Iq (j) , there must be at least two tasks in the primary schedule on prgcédsoy
the inequalitylp(i) > Iq (j) must hold. If not, the second task on processtiould be
scheduled on processaxccording to the LPT algorithm. Sin%e(i) > Iq (J) , no overlap-
ping can occur between any primary copy and its corresponding backup copy.

Case 2:Ip(i) <D/2 andlp(j) >D/2. Sincelp(j) >Ip(i) , there must be at least
two tasks in the primary schedule on proceggeollowing similar agument used in Case
1 yields that no overlapping can occur between any primary copy and its corresponding
backup copy.

Case 31p (i) >=b/2 andlID (j) <£DI/2. No overlapping can possibly occur between
any primary copy and its corresponding backup copy in this case.

Case 41 0 (i) >D/2 andl o (j) >DI/2. Obviouslyno overlapping can possibly occur
between any primary copy and its corresponding backup copy in this case. If this case
occurs, no 1-TFT schedule can be generated.

Since Step 5 in the scheduling algorithm ensures that any backup copy finishes
before the deadlinB, the schedule thus generated is 1-TFT. The theorem holds. =

Observation: The schedule generated by NOV is 1-TFT in the worst case and
L m/2|-TFTin the best case, whemeis the number of processors. The schedule is 1-TFT
by Theorem 6.2. The schedulé i®/ 2 |-TFT, because the failure of up|te/2 | number
processors can be sustained, if none of thé2 | processors that fail has its twin among
them. In the schedule generated by N&\shown in Figure 6.6, if processors 1 and 2 fall,
their twin processors, processors 3 and 4, can execute the backup copies such that none of

the task deadline is missed.

166

6.1.3. Analysis and Performance Evaluation

In order to evaluate the performance of the scheduling algorithm, we develop
another heuristic algorithm that calls the above algorithm to solve its corresponding opti-
mization problem. In other words, we assume that the number of processors is not known
and the scheduling goal is to find the minimum number of processors required to execute a
set of tasks. Then this is the optimization problem corresponding to the schedule problem
described above. 8use the typical binary search technique to find the minimum number
of processors required to schedule a given set of tasks such that the schedule generated is

1-TFT. The algorithm is given in Figure 6.7.

NOV-Test (Input: Task Sek, 1-TFT; Outputm andschedulg

(1) LowerB := [[%‘: AT)4 IDJJJ,DerB =n;

@)m:= | (LowerB+ UpperB/2]|; IF (LowerB=m) THEN{m :=m + 1;
EXIT);

(3) Invoke NOV (X, m, 1-TFT, success, schedule);

(4) IF success THENUpperB :=m ELSELowerB := m; Goto Step 2.

Figure 6.7: Algorithm NOV-Test

Example: Suppose that a task set is given as the one in Section 6.1.2., and the ques-
tion is to find the minimum number of processors necessary to execute the task set, allow-
ing for one processor failure. The number of processors returned by executingeSO¥
four, which is in fact equal to the optimal number of processors required.

The time complexity of NOV i© (nlog n+ nlogm) , wheren is the number of
tasks, andn is the number of processors. The sorting process @Ketgn) time. The
LPT in Step 2 take® (nlogm) time. Since the binary search is boundedX§logn) ,
NOV-Test take<O ((nlogn+ nlogm) logn) time.

To evaluate the performance of the NOV algorithm, we generate task sets randomly
and run NOV-Est. Since the scheduling problem is NP-complete, it is hopeless in practice
to use enumeration techniques to find the optimal solution even when the number of tasks

is small. Howeverto find out how well the algorithms perform, we consider the lowest

167

bounds possible for each schedule. Since backup copies are allowed to overlap, the mini-
mum number of processors required to schedule the task 28usy D], whereSumis
the total computation time of the tasks, dhds the deadline or period. The factor of 2
comes from the fact that no overlapping of backup copies is allowed. Therefore, we use
[2Sunmy D] as the lowest bound possible for each schedule.

Our simulation is carried out in the following fashion: First, a common deéddline
is chosen. Then a range of values is chosen, from which the computation times of the tasks
are randomly generated. NO¥4t is run for each set of tasks. The ratio between the com-
mon deadlindd and the maximum computation time of the tasks,ri2.D / max (C,) ,
is kept between 2 and 10. For each different valuee run NOV-Test for a wide range of
task sets. Because of space limit, we only show the result of a typical set of experiments,
wherer = 3 and each data point represents the average value of the number of processors
obtained by running 20 independently generated task sets. The result is plotted in Figure
6.8. It is evident from our extensive simulation that theetdhce between the number of
processors computed by this algorithm and the lowest bound possible is onlyradsw
it is concluded that the performance of the algorithm is near-optimal.

The performance of NOV may seem surprisingly good at the first glance. Hpwever
it is not surprising at all if we take a closer look at the performance of the heuristic. Graham
[25] proved that the worst case performance of LPT was tightly bounded byl43,
wherem is the number of processors. Howevkat bound is only achievable by a patho-
logical example, where, with the exception of one procegsmnumber of tasks scheduled
on each processor is only two. @oén and Sethi [13] later generalized Gralabdund
to be k + 1)/k — 1/(km), wherem is the number of processors, dnd the least number of
tasks on any processork is the number of tasks on a processor whose last task terminates
the schedule. This result shows that the worst case performance bound for LPT approaches
unity approximately as 1 +K./The worst case performance of NOV is therefore expected

to be better than 1 +K./

168

—— Algorithm NOV
- - 2*xSum /D

Number of Processors

0] 20 40 60 80 100 120 140 160 180 200
Number of Tasks

Figure 6.8: Performance of NOV
In our experiments, each processor is approximately assigned five tasks, and thus
the worst case performance bounds for both heuristics are expected to be less than 1 + 1/5
= 1.2, according to the above analysis. Also, it is quite unlikely to randomly generate a task
set, which can coincide with the worst cases for the heuristic.
To analyze the performance of the algorithm, we first analyze the performance of

the following algorithm:

NOV_1 (Input: Task Sek, m, 1-TFT, Output:Length, schedu)e

(1)-(4) The same as Steps 1-4 of Algorithm NOV.
(5) Return the maximum length among the mixed schedules as the length
of the overall schedule.

The only diference between NOV_1 and NOV is that there is no deadline con-
straint in NOV_1.

If O, = ma&_ogl‘l(_—A) E whereA represents NOV_1, L(A) the length of schedule
generated by heuristic A,Oalhg the length of the optimal schedule, then we can conclude

that 05 =max DL I(_B) E whereB represents NOWest andL, the length of the corre-
° 0

169

sponding optimal schedule. The conclusion is based on the resultfoya@pGarey, and

Johnson [14].

L L
0 T
No N,
Optimal Schedule Schedule by NOV_1

Figure 6.9: Relationship Between Performance Parameters

LetL andL, denote the schedule lengths obtained by NOV_1 and the optimal algo-
rithm, respectivelyL etN andN, denote the schedule lengths obtained by LPT and the opti-
mal algorithm, respectiverLX = HZ”: lI (T H/n. The relationship among these
parameters is given in Figure 6.9. By definitibrg Ly, N> Ny, N, 2 L, andL, > oL .

Supposk is the minimum number of tasks assigned to a processor in a schedule.

Lemma 6.3: Ifk<1inthe schedule pduced by NOV _1, the schedule is optimal.

In other words 1, =1.

This lemma is trivially true since each processor is assigned at most one task.

Theorem 6.3: [, < 7/6-1/(6m) , whee Arepresents NOV_1 anah is the
number of processors.

Proof. We prove the theorem by contradiction.

If L=2", then the schedule is optimal and hence= 1. Therefore we need only
consider the case whelre> 2L".

. L 7 1 . *
Suppose thatl, > 7/6-1/ (6m), i.e., L_o > é—m . SinceL, = 2L, we

have L* > L >I__1_ . In other words,
oL Lo, 6 (6m)

L (Eq.6.1)

L > .

wi~

170

SinceN# L~ (otherwise = 2L), the schedule generated by LPT is shown in Fig-
ure 6.10, wher®V| is the earliest time a processor finishes executing its primary task cop-
ies. There are two cases to considéy: L andN, >L .

Case 1N, 17 Sincel, = 2N, from the assumed condition, it follows from ine-
quality (6.1) that. / N, > 7/3-1/(3m) . SinceL = N + W, we haveN/N, > 7/3—- 1/

(3m) - W/L™. SinceW/L" < 1, we haveNIN, > 7/3- 1/(3m) - W /L™ > 4/3- 1/(3m),
which contradicts the result thidfN, < 4/3- 1/(3m) by Graham [25].

Case 2N, *. SinceL, =2, we have/L, = L/(2L"), i.e,L/IL" > 7/3— 1/(3m).

SinceL =N +W, L/L" =N/L™ +W/L". SinceW/L" < 1, we havé\/N, = N/L" > 4/3- 1/

(3m), which results in a contradiction again. |

— |

M processors

Figure 6.10: A Schedule Generated by LPT and NOV_1

Theorem 6.4. [, < (k+1)/k, where A represents NOV_1,sithe number of
processors, and k is the minimum number of tasks assigned on eaebsor in the pri-
mary schedule.

Proof: Let m be the number of processors required to schedule a given task set

Obviously,L < 2N. LetT, be the task with the largest index whose finishing time in
the primary schedule Is ThenN < L(t)) + Z”: Lig T /M=M= 1)L(T) /m+ Z”: T
Im<ml(t) /m+ Z”: LT /m. SincemL(t)) < Z”: . T 'k where k is the minimum num-
ber of tasks assigned to each processor in the primary schHedule + 1k) Z”: T /m.

SinceLp 22y |1, /m, we have

171

L<2N<2(1+ 1/k)zi“: LT <1+ 1KLL,

Therefore, [, < (1 + 1K). [|

6.2. Overlapping of Backup Copies

What we mean by allowing backup copies to be overlapped is that backup copies
of the tasks whose primary copies are scheduled terefit processors are allowed to be
overlapped in time of their executions on a processace, in the worst case, only one pro-
cessor failure is tolerated by assumption. Howevackup copies of the tasks whose pri-
mary copies are scheduled on the same processor should not be scheduled to overlap each
other in time of their executions on a procesddhe given number of processors is two,
there apparently exists an optimal algorithm to schedule a set of tasks having a common
deadline so as to tolerate one arbitrary processor failure. However, for more than two pro-

cessors, the scheduling problem is NP-complete, even if the tasks have the same deadline.

6.2.1. Complexity of the Scheduling Problem

Task Sequencing Using Primary-Backup with a Common Deadline

Instance SetZ of tasks, number of processons> 3, for each task[1 >~ , one pri-
mary copyP (t) and one backup cogy (t) , alengthl (t) O z" (i.e., computation time),
a common release timedZ", a common deadlinel(t) = DO Z", and | (t)y =
| (P (t)) = 1(G(t)) . Note that overlapping among backup copies of the tasks on differ-
ent processors is allowed.

Question Is there am-processor schedute farthat is 1-TFTi.e., for each task
tOZ, o, (P(1) +1(P(1) <0;(G (1), ando; (G(1)) #(G(t)) <D ,wherezj i,
andj designate the index of processors.

Theorem 6.5: The Task Sequencing Problem is NP-complete.

Proof: It is easy to verify that the scheduling problem belongs taNgfhow trans-
form the RRTITION problem [23] to the scheduling problem when the number of proces-

sorsis 3,i.em =3.

172

Given an instance of A £a,,a,, ...,a,} of the ARTITION problem, we con-
struct a task séf using the primary-backup copy approach to run on three processors for
the tolerance of one arbitrary processor failure, suctktban be scheduled, if and only if
there is a solution to the PARTITION problemconsists ofi + 4 tasks as follows:

r(t) =0,I(t) =a,d(t) = 3B,
fort=1,1,...,7,, Wherezls nd =B (This can be assumed without lose of gener-
ality). Thesen tasks are referred to astype tasks.

The other four taskB;, [, B; ,aM) are defined as

r(B) =0,1(B) =B,d(B) =3B,
wheref = B, B,, B4, B, - These four tasks are referred t@agpe tasks.

It is easy to see that this transformation can be constructed in polynomial time.
What we will show in the following is that the set A can be partitioned into twgetsd
S, such thatzaD %s(a) :ZaD SZs(a) an®, &, = A, ifand only if the task set can
be scheduled to produce an 1-TFT schedule.

First, suppose that A can be partitioned into two s&tsand S, such that
ZaD Sis(a) = Zal] S‘Zs(a) andS, +S, = A. Then for each task [J S, whose length
isl(a) =a, its primary copy is scheduled on processor 2 anywhere during time interval
[B, 2B), and its backup copy on processor 3 anywhere during time inteB,&@3B2 For
each tasla S, whose lengthliga) a= , its primary copy is scheduled on processor 3
anywhere during time intervaB[2B), and its backup copy on processor 2 anywhere during
time interval [B, 3B). For the task§, , B,, B;, andB,, they are scheduled in the manner
as shown in Figure 611 The schedule thus generated is 1-TFT according to Lemma 6.2.
Therefore, the task sg&tis scheduled on the three processors such that the schedule is 1-
TFT.

Converselyif the task sek can be scheduled on three processors such that the
schedule is 1-TKThen the schedule has one of the two forms as given in Figures 6.12 and

6.13, if the processors are properly renamed and the tasks properly adjusted. Note that for

173

processor 1 PB) PBa) G(Ba) TG

) P(2) P(>) G[B 16(5)
PIoEesso TPy P(S) G TGS
processor

0 B 2B 3B

Figure 6.11: Mapping from PARTITION to Task Sequencing

each processor schedule, slng the primary copies in front of all the backup copies will
not violate any scheduling constraint, since primary copies can start earlier than scheduled
and backup copies can start later than scheduled, as long as the release time and the dead-
line constraints are not violated.

Case 1 (Figure 6.12): The primary copies of the four tBsk8, B, , Band are
scheduled on three processors. Let us assume, with lose of genétlitye primary cop-
ies of 3; andB, are scheduled on processor 1. Then one of their backup copies must start
at time2B and complete at the deadlinB, &ither on processor 2 or on processor 3. It is
further assumed that backup copy is scheduled on processor 2. For processor 3, exactly one
copy, either primary or backup, of any task amongrthetype tasks must be scheduled on
it. This is because any 1-TFT schedule for the three processor requires that no idle time
exists on any process@nd the primary copy of a task and its backup copy must not be
scheduled on the same proces3$berefore, let all the tasks scheduled on processor 2 dur-
ing time interval B, 2B) be the se§;, U, during B, 2B] in the Figure 6.12), and the tasks
on processor 1 during time intervalB[23B) be the setS,, we haveZaD%s(a) =
ZaD %s(a) andS, +S, = A. We have solved the PARTITION problem.

Case 2 (Figure 6.13): The primary copies of the four tBsk8, B, , Band are
scheduled on two processors. For the backup copies of theBtasks, 35, andB, , there
are two cases in which they can be scheduled:

Case 2.1: The four backup copies are scheduled on processor 3 during time interval
[B, 3B). Then during time interval [B) for processor 3, only primary copies can be sched-

uled if any 1-TFT schedule exists. Let all the tasks scheduled on processor 3 during time

174

processor 1 P(B1) P2 P(U) G(S)

) P(B2) P(Uy) G
processor ” POy POy & lf)z)
processor

0 B 2B 3B

Figure 6.12: Mapping from Task Sequencing to PARTITION

processor 1 P(BY PB4
processor 2 (b2 Fs)
processor 3
0 B 2B 3B

Figure 6.13: Mapping from Task Sequencing to PARTITION

interval [Q B) be the se5;, and the rest of tha tasks be the se$,, we again have
zaD%s(a) = ZaD%s(a) andS; +S, = A.

Case 2.2: Wo of the four backup copies are scheduled on processor 1 and processor
2 during time interval [B, 3B) respectivelyThis implies that all the primary copies of the
n tasks are scheduled on processor 3 (if any afithsks is scheduled on processor 1 or 2,
then there is not enough time for any of the backup co/-tyipe tasks to finish). The
backup copies of the a -type tasks must be scheduled on processor 1 and 2 during time
interval [2B, 3B). Let all the tasks whose backup copies are scheduled on processor 1 during
time interval [B, 3B) be the se§,, and the tasks whose backup copies are scheduled on
processor 2 during time interval B2 3B) be the setS,, we have ZaD Sls(a) =
ZaD SZs(a) andS; +S, = A. We have solved the PARTITION problem.

The scheduling problem is therefore NP-complete. |

6.2.2. Al-Timely-Fault-TolerantScheduling Algorithm

In the following, we will first develope a heuristic to solve the scheduling problem
as formulated above, i.e., the special case one, and then evaluate its performance. Though
the requirement that all tasks share a common deadline may seem restrictive, the analytic

results obtained below can be quite useful. In fact, our results answer the following ques-

175

tion as well: given a set of tasks each with a primary copy and a backup copy (but with no
real-time constraints), and the requirement that the failure of any one processor be toler-
ated, how to schedule the task set, such that the length of the fault-tolerant schedule is min-
imized, i.e., all the tasks complete execution as early as possible even in the presence of one
arbitrary processor failure?

In scheduling a set of tasks wrprocessors, the algorithm must be designed to min-
imize the schedule length on each processor such that the task set can be successfully
scheduled, and at the meantime, to prevent the overlapping of the primary copy of a task
and its backup copyAgain, for reasons similar to develop NOWe LPT algorithm is
adopted here to serve as the base algorithm upon which a new algorithm is developed.

The scheduling algorithm starts by sorting the set of tasks in order of non-increasing
computation times, and invokes the LPT algorithm to schedule the set of primary copies on
them processors. After all primary copies have been scheduled, all the tasks scheduled on
any processor are in order of non-increasing computation time, since the LPT algorithm
schedules tasks in the same or@arting from the first processor schedule, we repeatedly
apply the ALPT (Adapted Lgest Processingifie first) algorithm to the backup copies of
the tasks, whose primary copies are scheduled on the same praga#issther the inabil-
ity of the heuristic to schedule the task set is reported, or ath ffrecessor schedules are
exhausted. In the later case, the task set can be scheduled by the heuristic to produce an 1-
TFT schedule om processors. The ALPT algorithm schedules tasks like eldept that
the tasks (backup copies) may be scheduled a little bit later than they should beTihiEPT
modification is to avoid the overlapping of the primary copy of a task and its backup copy

We use pseudo-code to describe the scheduling algorithms in Figure 6.14. Note that
we sometimes refer to the schedules fom processors as one schedule as a whole. Let
s, (1) andf; (1) denote the starting time of taskand its finishing time on processor
respectively The processors are numbered from onev.tdhe functionp is defined as

p (Ly) =y for the schedulg, orp (v) =y for tasku, where y is the index of the processor

176

OV (Input: Task Sek, m, 1-TFT; Outputsuccess, schedyle

(1) Sort the tasks in the order of non-increasing computation time
and rename them T, T, ..., T,. Compute Q = In I(T,). F
Qz2mDor (T, > D/ 2 THENsuccess = FALSE and Iéport that
the task set is not schedulable on m processors such that a 1-
TFT schedule be produced. Otherwise, go to Step 2.
(2) Apply LPT algorithm to schedule the task set on m processors.
(3 Let Ly, L, ..., L, denote the lengths of the schedules on m pro-
cessors (initially equal to the lengths of primary schedules).
IF max{ L|(1<ism)} >D THENsuccess:=FALSE;EXIT (thetask
set can'’t be scheduled);, ELSE go to Step 4.
4)
(line 1) FOR processor i 70 th DO
Let U4, U,, .. 5 Uy bethe K tasks (primary copies) sched-
uled on processor I
(line 2) FOR task j FOL DAK(* ALPT Algorithm */

(line 3) X = pEmin{ L (h¢|D1<h<m)}U

(line 4) z:= m x{ § (v, l Lo}

(line 5) Eg+ 1(u5 5, (Gfw))

(line 6) IF L > D Then success ‘= FALSE; EXIT (The task set

is /nfeaSIble)
(line 7)success := TRUE; EXIT.

Figure 6.14: Algorithm OV

on which task copy is scheduled., denotes the length of schedule or the schedule itself
(understood by context) for the procesgdrhe process of scheduling can be illustrated by
the following simple example.

Example: The following set of tasks is given to be scheduled on three processors
such that one processor failure can be toler&ted{ T,, T,, ..., T} , {I(T) |[i =1, 2,...,
7}={10,88 7 6 6 3 ,r=0, andD = 25. First, the LPT algorithm is used to schedule
the primary copies of the tasks on three processors, as shown by Figure 6.15. For a proces-
sori, the backup copies of the tasks whose primary copies are scheduled on pra@ressor
scheduled on all the other processors except processoe scheduling process is illus-
trated by Figures 6.16a, 6.16b, and 6.16c¢. Note that if the number of processors available
is 2, then this set cannot be scheduled on 2 processors to produce a 1-TFT scAdaule.

correctness of the schedule generated by OV is guaranteed by the following theorem.

177

processor 1 10 [6 [[
processor 2 8 6 [3 1 primary backup idle
processor 3 8 7 |

25
processor 1]]
B{gggiigﬁ% . 8 8 7 l |q l 7 nﬁ l primary backup idle

(a) Schedule created by OV for the backup task copies on processor 1

5

processor 1 10 | 6 | 6 [3 0
rocessor 2 : ;
Brocessor 3) [7 |) [primary backupidle

(b) Schedule created by OV for the backup task copies on processor 2

25
processor 1 10 | 6 | 8 e
processor 2 8 [6 [3 | 7
processor 3

primary backup idle

(c) Schedule created by OV for the backup task copies on processor &

Figure 6.16: Scheduling Process of OV

Theorem 6.6: Algorithm OVgenerates an 1-TFT schedule.

Proof: According toLemma 6.2, what we need to show is that for each task, its pri-
mary copy and its backup copy are scheduled on twWerelift processors, such that the
starting time for the backup copy is no earlier than the completion time of the primary copy
and its finishing time is no later than the deadline, and that the backup copies of the tasks
whose primary copies are scheduled on a processor cannot be overlapped in time for their
execution in the same processor.

Formally, following the notations used above, we need to show that

Oi 1<i=smO0 (1=sjsk Of () £s5,(G(v))) Of (G(v;)) sDDTi#x O
Oj (1 <1 BUP(G(v;)) =X ~ (1, (G(v;)) =5.,(G(v)))))) holds, wherenis the
number of processors, amgis the number of primary copies scheduled on processor

i0[L,m.

178

Foreach O [1, m] andj O [1, k] ,sincex:phmin{ Lh| (hzi01l<h<sm)} 'E
from line 3,1 #x. SincesX(G(uj)) =z = max{ f(uj), L.}, sX(G(uj)) > f, (uj) :
f (G (uj)) < D from line 6.

Sincel; is initialized to be the length of the primary schedule on processor
fX(G(ujl)) SSX(G(UJ-)) sinceL, :z+I(uj) andsX(G(uj)) =z=max{ f(uj), L}
> Ly from lines 4 & 5, forj; <].

Therefore, the schedule thus generated is 1-TFT. |

6.2.3. Analysis and Simulation Results

Before we analyze the performance of the heuristicl@VWs define what we mean
by being optimal for a fault-tolerant schedule. A fault-tolerant schedule is optimal if for all
possible processor failure as assumed, its schedule length is the minimum possible. More
specifically, letm denote the number of processors in the system\a(dl the length of
the fault-tolerant schedule (schedule for primary and backup copies) on the ethgro-
cessors, assuming that proced’adnas failed, then the length of the overall fault-tolerant

schedule is defined &4 = max, W, (i) . IfW_is the minimum possible, then the

1<i<m}
schedule is optimal. The algorithm that generates the optimal schedule is called the optimal
algorithm.

In order to analyze the performance of Q¥ need to distinguish between two
types of task sets: those that are feasible and those that are not. Given adashkdsat
common perio®, the task set is called infeasible if its optimal schedule length exceeds its
given period. In other words, for an infeasible task set, no matter which algorithm is used,
it cannot be scheduled to produce a feasible schedule. We are, therefore, only interested in
the task sets that are feasible, i.e., their optimal schedule lengths do not exceed their given
periods. A good measurement of the performance of OV will be the frequency of successes

it offers in scheduling feasible task sets. Howgetlegs measurement depends heavily on

the parameter of peridd. If the given period is very lage with regards to a given task

179

set, then the algorithm will always find a feasible schedule for it. For example, if the given
periodD is twice as long as the optimal schedule length, then according to the results by
Graham [25], any algorithm, as long as it does not leave any processor idle when there are
tasks ready for execution, can generate a feasible schedule.

On the other hand, if the peri@dis very close to the optimal schedule length, then
OV may or may not find the feasible schedule, neither may other heuristics. In general, we
have no sure way of knowing whether a set of tasks is feasible or not, unless we run the
algorithm to find it out. In either case, it does not make much sense to analyze the perfor-
mance of OV directly, since it involves the given peiydvhich can be arbitrary.

However if we disregard the given periddl and focus on the ratio between the
length of the schedule generated by a heuristic and the optimal schedule length, we have a
better idea of how well the heuristic performs. For example, if the ratio is 1.2 for a heuristic,
then as long as the given peribdis equal to or more than 1.2 of the optimal schedule
length, it can always find a feasible schedule. A heuristic with a ratio of 1.2 will always per-
form no worse than a heuristic with a ratio of 1.8. Note that the ratio is obtained under
worst-case conditions. This analysis leads us to the study of a heuristic (hereinafter referred
to as heuristi@\) slightly different from OVHeuristicA schedules tasks in exactly the same
manner as OV except that line 6 in Step 4 is omitted, i.e., it treats each task set as having a
periodD of infinity. Note that this heuristic is exactly an solution to the question raised at
the beginning of this section.

Let L(A) andLy denote the length of the overall fault-tolerant schedule generated
by heuristicA and the optimal schedule length, respectivélgen the ratioll, =
maxL(ELE—A)E measures how close a schedule is to an optimal schedule, with respect to
the complgtion time of the tasks. This metric is an indicator of how good a scheduling heu-
ristic is. In the following we seekl, for the heurishc

Let us defindP§ as the schedule of primary copies on proceBsdor 1 <i<m,

2; as the set of tasks whose primary copies are assigned on préeasds;” = 3 - Z;.

180

We further definé®M; as the primary schedule on the otimer 1 processors where proces-
sorP; has failed. W assert that the primary sched@M; is equivalent to the schedule gen-
erated by LPT on the task sgt for m— 1 processors. A schedule is equivalent to another
schedule if both schedules have the same set of tasks and the starting time of each task (and
hence its completion time) is the same in both schedules. The possible difference between
two equivalent schedules is that some tasks may be assignefeoentliprocessors. The
relationship betweeR§ andPM,; is illustrated in Figure 6.17.

Lemma 6.4: The primary schedulBM; is equivalent to the schedule generated
by LPT on the task sgf for m— 1 processors, i.e., LPI(m)- PS OLPTE - Z;, m-1),
for 1<i <m, where LPTY, m) denotes the primary schedule generated by L& task
setZ on m processors.

Proof: For any taskj [= - % with j [[1, 2,..., m— 1], it starts on time zero in
both schedules LPE(m) and LPTE - %, m—1). For LPTE - Z;, m— 1), the firstm— 1
tasks are assigned to tive- 1 processors with a starting time of zero. For LRT{), the
first mtasks are assigned to tlmgprocessors with a starting time of zero. Since one of the
first m tasks is deleted, the remt- 1 tasks are the firsh — 1 tasks inx — ;.

Let | =m;, then}y” | = B - | =n—m;. For any tasKj in LPT@, m) - P§ with a
starting time o8(T;) form—1<, it must be scheduled on a processor other than processor
P; ands(T;) be the earliest idle time among the- 1 processors. This implies that the start-
ing time for taskT; in the schedule LPE(- Z;, m- 1) is the same as it is in LP,(m).

On the other hand, for any taﬁkin LPTE - %, m— 1) with a starting time d(Tj)
form-1<j<n-n, it cannot be scheduled on proced3oin the schedule LPE(m),
otherwise it would have been deleted in throdigh Z;. Therefore, the earliest idle time
among then — 1 processors other than proced’3as exactly the same as the starting time
S(T;j) for taskT; in LPT@E - Z;, m - 1). Therefore, the two schedules are equivalentm

What Lemma 6.4 tells us is that every schedM is equivalent to the schedule

generated by LPT on the task et Z;. SinceOV first schedules the primary copies using

181

PS P [

PS B = Jl

PS — Zi —> |

5 | | PSnld |
LPT(Z, m) PMi = LPT(Z'Zi, m-l)

Figure 6.17: Relationship Between Schedules

LPT and then the backup copies using ALBIE worst case performance bound is there-
fore expected to be around 1 « fdr k > m according to the result by Gofan and Sethi

[13]. This is due to the observation that ko» m, all the backup copies of the tasks are
scheduled immediately after the primary schedule on each processor. In the following, we
show that our heuristic A has an upper bound which is similar to that for LPT. But it turns
out to be non-trivial to show that the upper bounds are tight for heuristic A.

Lemma 6.5: Let kdenote the least number of tasks (primary copies) on any pr
cessor or the number of tasks on agassor whose last task terminates the schedke. If
= 1, then the schedule is optimal.

Proof: The backup copy of a task will be assigned a starting time no earlier than its
primary copys finishing time. Lefl” be the task with the minimum computation time
requirement”, andP” be the processor on whigh is assigned.

For any task other tharT”, its backup copy will be scheduled on proce$Soor
any idle processor, with a starting timetatvhich is the computation time requirement of
taskT. For taskT", its backup copy will be assigned to an idle processor with a starting time
of T, if there is any idle processar to the processor on which the task with the second
smallest computation time requirement is assigned, with a starting time equal to the finish-
ing time of the task.

Since all the backup copies of the tasks are assigned the earliest starting times as
possible, the schedule is therefore optimal.]

Let 1,0 0€ the lagest computation time in a task set and) be the length of the

182

schedule on processBy. Then we have the following result.

Theorem 6.7: 0O, < sS__ L whee mis the number of pcessors. If

AT 2 2(m-1)"
KT max = [thi]/ (m-1) withk=2, thend, <1+ Uk- U(k(m- 1)).

Proof: Since the backup copy of any taskust be assigned a starting time no ear-
lier than its primary copy finishing time Ly = 2rt. LetT" be the smallest backup copy that
finishes last in the fault-tolerant schedule where the procBssas failed, and” be its
computation time requirement. Lét be the processor on whidh is assigned. Since the
primary schedule can be taken as generated by LPT according to Lemma 6.4, and the
backup schedule by ALPWe have.(j) =1" +(T"), wheres(T") is the starting time of task
T". Furthermores(T') < [ZTﬂ*Ti]/ (m-1) .

L) =T +T)<sT + [ZHTJ].]/ (m-1)

<(m-2)t/(m-1) + [S+1]/ (m=1)

< (M- 2)Ly/(2(m- 1) + Ly,
sincely > max {2r, [S.6]/ (m=1)}.

L(i) Lo=max () o we havell, <3/2

SinceDA =max (1<i<m} [L B

-1/ (@m-1)).
If Kimax= [17,1/ (m=1) withk=2, thenkt” < KTpays [S,1]/ (m=1) <

{1<i<m}

Lo, Wheret,axiS the largest computation time in the task set.

SinceL(i) < (m=-2)t"/(m-1) + I:ZTTJ-]/ (m-1) < (m-2)Lg/ (k(m-1)) + L,
we havell , <1+ Ik-1/(k(m-1)). |

The bounds given in Lemma 6.7 are the worst-case bounds. It is interesting to find
out the performance of the scheduling algorithm on the average cases, Wealignt to
find out the success ratio of OV with regards to feasible task sets. Since it is hard to verify
whether a task set is feasible or not (the scheduling problem is NP-complete), we again
develop another heuristic algorithm, which calls the above algorithm to solve its corre-

sponding optimization problem. In other words, we assume that the number of processors

183

is not known and the scheduling goal is to find the minimum number of processors required
to execute a set of tasks. Then this is the optimization problem corresponding to the sched-
ule problem described aboveeWse the typical binary search technique to find the mini-
mum number of processors required to schedule a given set of tasks such that the schedule

generated is 1-TFT, as we have done in Section 6.1.3. The algorithm is given as follows:

OV-Test (Input: Task Sek, 1-TFT; Outputm andschedulg

(1) LowerB := [EB:‘: A)4 IDJprerB =n;

@) m:= | (LowerB+ UpperB/2]; IF (LowerB=m) THEN{m :=m + 1;
EXIT)

(3) Invoke OV (2, m, 1-TFT, success, schedule);

(4) IF success THENUpperB:=m ELSELowerB := m; Goto Step 2.

Example: Suppose that a task set is given as the one in Section 6.2.2., and the ques-
tion is to find the minimum number of processors necessary to execute the task set, allow-
ing for one processor failure. The number of processors returned by executifesO¥
three, which is in fact equal to the optimal number of processors required.

To evaluate the performance of OMe generate task sets randanalgd run OV
Test. Since the scheduling problem is NP-complete when the number of processors is three,
we usg Suny D] as the minimum number of processors required to schedule the task set,
whereSumis the total computation time of the tasks &nid the deadline or period.

Our simulation is carried out in the following fashion: first, a common deadline
is chosen. Then a range of values is chosen, from which the computation times of the tasks
are randomly generated according to the uniform distributioaT€¥¥ is run for each set
of tasks. The ratio between the common deaddia@d the maximum computation time of
the tasks, i.er, =D / max (C;) , is kept between 2 and 10. For eaclfedént valuer, we
run OV-Test for a wide range of task sets. Because of space limit, we only show the result
of a typical set of experiments, where 3 and each data point represents the average value
of the number of processors obtained by running 20 independently generated task sets. The

result is plotted in Figure 6.18. It is evident from our extensive simulation that there is only

184

one or two processor €#rence between the number computed by this algorithm and the
lowest bounds possible. Thus it is concluded that the performance of the algorithm is near
optimal.

In our experiments, each processor is approximately assigned six tasks, and thus the
worst case performance bounds for both heuristics are expected to be less than 1 + 1/6 =
1.1667, according to the above analysis. The performance of OV is therefore consistent
with the analysis. Since the lower bouBdm/D is the lowest possible, the algorithm may
in fact find the optimal schedules in many cases. In any case, the algorithms find schedules

that are near optimal.

35

307 —x— Algorithm OV -
- - Sum/D]

254
20

154

Number of Processors

104

0] 20 40 60 80 100 120 140 160 180 200
Number of Tasks

Figure 6.18: Performance of OV

Chapter 7 Conclusion

“That which is achieved the most, still has the whole
of its future yet to be achieved.”
-- Lao Zi, Dao De Jing

7.1. Contributions

In this thesis, we study four scheduling problems that are fundamental to support
timeliness and dependability in a computer systems@ve the problems by developing
a number of algorithms that are provablieefive. Simulation results also reveal that they
have good average case performance.

(1) The worst case performance bounds of various algorithms for the RMMS prob-
lem are given indble 7.1. Comparing the bounds &ble 1.1 and indble 7.1, it is appar-
ent that we have the best on-line andlioe algorithms to date with regard to worst case
performance and average case performance. By the “best” algorithm in the worst case per-
formance we mean that the algorithm has the lowest worst case performance bound among
all the heuristic algorithms for the same problem, whose bounds are known. In the analysis
of algorithms, we not only obtain the upper bounds but also provide examples that show
the upper bounds are tight or nearly tighé @érive the worst case performance of the algo-
rithms with respect to the maximum allowable utilization of a task as well. Simulation
results show that we also have the best algorithms for the RMMS problem with regards to
average case performance.

(2) In solving the RMMS problem, we discover a number of schedulability condi-

tions for the RM scheduling. These conditions arégent conditions, but they can deliver

185

Table 7.1: Performance Bounds of New Algorithms for RMMS

186

Algorithm A DX Complexity Type
RM-FF [2.283, 2.33] O (nlogn) On-line
RM-BF [2.283, 2.33] O (nlogn) On-line
RRM-FF <1.96 O (nlogn) On-line

RRM-BF <1.96 O (nlogn) On-line
RMGT-M <2 O(n) On-line
RMST 20;<1/(1-0a) O (nlogn) Off-line
RMGT 1.75 O (nlogn) Off-line
RM-FFDU 1.667 O (nlogn) Off-line
RM-FF-IFF [1.72, 1.96] unbounded On-line
RM-FFDU-IFF [1.44, 1.667] unbounded Off-ling

better performance than Liu and Laylasmdondition. These conditionsfef us a much
broader view on the RM scheduling.

(3) For the FIRMMS problem, we solve it by proposing an algorithm called FT
RM-FF. FT-RM-FF is shown to have a nearly tight bound of 2.33. This is the first theoret-
ical result ever obtained for the fault-tolerance of periodic task systems.

(4) For the FIEDFMS problem, we solve it by proposing an algorithm called FT
EDF-FF, whose performance is shown to be tightly bounded by 1.7.

(5) For the fourth problem, we prove that the problem of scheduling a set of periodic
tasks on as few as three processors and with a common task deadline such that one arbitrary
processor failure can be tolerated is intractable @lgorithms are proposed to solve the
problem with respect to the overlapping of backup tasks. Analytical bounds are also
derived for the two algorithms. Simulation shows that they haveapianal performance
on the average.

(6) Though some of the above problems are studied in the context of real-time and
fault-tolerant computer systems, they are in fact equivalent to some unsolved problems in

other contexts. By solving these problems, we are actually solving other problems as well.

187

For example, the FEDFMS problem is equivalent to a constrained bin-packing problem,
where some items should not be assigned to the same bin.

Although it is not dificult to adapt any of the existing bin-packing heuristics to
solve the RMMS, it is difficult to analyze their worst case performance; to obtain the tight
bounds for these heuristics is even more s®.avé aware that the number of steps of our
proof may seem daunting. But because of the importance of the final result, clarity and rigor
are of prime concern. Worst case analysis is necessary for real-time applications, since the
missing of hard deadlines can result in a catastrophic consequence. Once proven, the algo-
rithm and its performance results can be used by practitioners without worrying about its
worst case behavior.

The results presented in this thesis are fundamental, since allocating a set of tasks
on the least number of processors is a natural extension to the problem of scheduling a set
of tasks on a single process®he two analytic results for FRM-First-Fit and FIEDF-

First-Fit are the generalization of the previous well-known results.

The Rate-Monotonic scheduling was first discovered around 1972-1973, and made
known to the world through Liu and Laylasd973 papetit took about 15 years until 1988
when RM scheduling was used as a scheduling algorithm for a real-time operating system.
Now the RM algorithm has been used in a number of applications [7]. The first result on
RM scheduling heuristic for multiprocessor was derived in 1978 and was presented in
Dhall and Lius 1978 papernterests in task scheduling on multiprocessors have rapidly
increased only recently, because of the inevitable employment of multiprocessors in many
real-time systems. @believe that the results presented in this thesis are timely results for
the research community and for practitioners at large.

In summarywe believe that by solving these problems, we have contributed to the
establishment of a firm theoretical foundation for guaranteeing task deadlines in a real-time

and fault-tolerant environment.

188

7.2. Future Work

(1) There are several interesting problems remaining for the RMMS problem. What
are the tight bounds for the RM-FF-IFF and RM-FFDU-IFF algorithms? What is the low
bound for any on-line algorithm for the RMMS problem? For bin-packing, it is proven that
the low bound for any optimal on-line algorithm cannot be smaller than 1.533... [44]. Does
the other variation of the Best-Fit heuristic other than the one we investigated in this thesis
have a better performance in the worst case?

(2) Another potentially fruitful area for research is the scheduling of periodic tasks
with resource sharing on a multiprocessor system such that task deadlines are guaranteed
by the RM algorithm. We very much intend to study problems in this area.

(3) Our future work for the FRMMS problem will focus on designing algorithms
with lower worst case performance bounds. We believe that algorithms with better perfor-
mance can be found, although it may not be easy to obtain the tight bounds for these algo-
rithms.

(4) Many problems remain open for non-preemptive scheduling of tasks. The toler-
ance of more than one arbitrary processor failures requires that the number of primary cop-
ies or backup copies be more than one for each task. Also, the requirement that all tasks
share a common deadline seems restrictive. It will be of great interest to solve the schedul-
ing problem under the condition that tasks havieiht deadlines. Howevewre believe
that finding reasonably fefient heuristics to solve the scheduling problem with only real-
time constraints is prerequisite to solving the scheduling problem with real-time and fault-
tolerant constraints. Another question remains where for some task systems, the mapping

of tasks to processors is not arbitrary because of access to peripheral devices.

Appendix A

In this appendix, we show that some errors exist in the proof for the upper bound of
RMFF by Dhall and Liu in [20]. Their RMFF is almost the same as our RM-FF except that
in their RMFF the IP condition is used with the tasks being sorted in the order of increasing
period. They obtained the following results:

Lemma I: If m tasks can not be feasibly schedulechon 1 processors according
to RMFF, then the utilization factor of the set of tasks is greaterrtIquﬁlil + 2" 3H

Lemma IlI: If tasks are assigned to the processors accordiRyifeF, among all
processors to each of which two tasks are assigned, there is at most one processor for which
the utilization factor of the set of the two tasks is less than 1/2.

Theorem I: Let N be the number of processors required to feasibly schedule a set
of tasks by RMFFand N, the minimum number of processors required to feasibly schedule
the same set of tasks. Then agaNproaches infinity, N / Ny< 4 x 213/ (1 + 2/3) (O
2.23).

Unfortunately Lemma | is incorrect, as shown by the following counter example.
Lemma Il gives a weak result f&MFF. These two errors led the authors to arrive at the
wrong upper bound. In the following, we first show the incorrectness of Lemma |, and then
give a strong version of Lemma ll.

Example: Consider the case wheare= 2 and the two tasks are given as follows:

1,=(2Y2-1,1)

1, = (2- 212 + ¢, 213, wheret is a small number argl> 0.

According to RMFFr is first assigned to a processor. Singe 2121 and 21
+u)t-1=2"2-1<22-1 +¢/2Y2 =y, 1, can not be scheduled together with task
T4 on one processaaccording t&Condition IP Sincet, andt, can not be scheduled on one
processorny, + U, must be greater than 2/(1 #’34 [10.88 according to Lemma |. Buj +
u, = 2(2? - 1) +e/ 212 = 0.8284 4 / 212 which is less than 0.88 for smalll

A stronger (tight) version of their Lemma Il can be given in the following lemma.

189

190

The proof is similar to that of Lemma 3.2.

Lemma Il (Revised): If tasks are assigned to the processors accordiRdy/er,
among all processors to each of which two tasks are assigned, there is at most one processor
for which the utilization factor of the set of the two tasks is less th&l‘?’z(.?[).

Note that Lemma 1 is true if their RMFF used instead the necessary toiérsuf
condition given by Lehoczky et al in their 1989 paper [40hior 2, and our new result as
stated in Theorem 3.3. It may be the case that Dhall and Liu indeed considered the problem
of scheduling a set af tasks onn processors (with one task on each processor), and
obtained the result in Lemma I. However, for their upper bound to hold, the necessary and
sufficient condition must be used in their RMFF scheme instead. In either case, the upper

bound of 2.23 does not fit.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

191

Bibliography

N.C. Audsley,Deadline Monotonic Scheduling?h.D. Thesis, Dept. Computer
Science, University of York, 1990.

A. Avizienis, The N-version Approach to Fault-Tolerant Softwde&E Transac-
tions on Software Engineering 11985, 1491-1501.

B.S. Baker, A New Proof for the First Fit Decreasing Bin Packing Algorithm,
Algorithms 6 1985, 49-70.

S. Balaji et al, Workload Redistribution for Fault-Tolerance in a Hard Real-Time
Distributed Computing SysteriR,TCS-19 Chicago, lllinois, June 1989, 366-373.
J.A. Bannister and K. S. Trivedi, Task Allocation in Fault-Tolerant Distributed
SystemsActa Informatica 20Springer-Verlag, 1983, 261-281.

A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son, Assigning Real-Time Tasks to
Homogeneous Multiprocessor Systems, submittdB e Transactions on Com-
puters January 1994,

A. Burchard, Y. Oh, J. Liebeherr, and S. H. Son, A Linear Time On-line Task
Assignment Scheme for Multiprocessor SystelaEE 11th Workshop on Real-
Time Operating Systems and Softw&eattle, Washington, May 1994.

R.W. Butler, An Assessment of the Real-Time Application Capabilities of the
SIFT Computer SystenNASA Technical Memorandum 8443dril 1982.

S. Cheng, J.A. Stankovic, and K. Ramamritham, Scheduling Algorithms for Hard
Real-Time Systems: A Brief Survey, Tutorial: Hard Real-Time Systems, EFF
Press, 1988, 150-173.

H. Chetto and M. Chetto, Some Results of the Earliest Deadline Scheduling Algo-
rithm, IEEE Transactions on Software Engineering 15(1989, 466-473.

R.W. Conway, W.L. Maxwell, and L.W. MilleiTheory of SchedulingAddison-
Wesley, Reading, MA, 1967.

E.G. Coffman, Jr. (ed.;omputer and Job Shop Scheduling Theblgw York:

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

192

Wiley, 1975.

E.G. Coffman, Jr. and R. Sethi, A Generalized Bound on LPT SequeR&nge
Francaise d’Automatique Informatique Recherche Operationelle 1,01&j6,
Suppl., 17-25.

E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson, An Application of Bin-Packing
to Multiprocessor Schedulin@lAM J. Computing,71978, 1-17.

E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson, Approximate Algorithms for
Bin Packing - An Updated Survey, KWlgorithm Design for Computer System
Design 49-106, G. Ausiello, M. Lucertinit, and P. Serafini (eds), Springer-Verlag,
New York, 1985.

S. Davari and S.K. Dhall, An On Line Algorithm for Real-Time Tasks Allocation,
IEEE Real-Time Systems Symposit@86, 194-200.

S. Davari and S.K. Dhall, On a Periodic Real-Time Task Allocation Problem,
Proc. of 19th Annual International Conference on System Scieh®86, 133-
141.

R.I. Davis, K.W. Tindell, and A. Burns, Scheduling Slack Time in Fixed Priority
Preemptive SystemHl;EE Real-Time Systems Symposilf93222-231.

S.K. Dhall,Scheduling Periodic-Time-Critical Jobs on Single Processor and Mul-
tiprocessor Computing SystemBh.D. Thesis, University of lllinois, Urbana,
1977.

S.K. Dhall and C.L. Liu, On a Real-Time Scheduling Problédperations
Research 261978, 127-140.

B.L. Di Vito and R.W. Butler, Provable Transient Recovery for Frame-Based,
Fault-Tolerant Computing System&EE Real-Time Systems Symposia892,
275-279.

J.D. Gafford, Rate-Monotonic SchedulinBEE Micro, June 1991, 34-39.

M.R. Garey and D.S. Johnsddomputers and Intractability: A Guide to the The-

193

ory of NP-completenes®/.H. Freeman and Company, NY, 1978.

[24] M.J. Gonzalez and J.W. Soh, Periodic Job Scheduling in a Distributed Processor
SystemEEE Transactions on Aerospace and Electronic Systems BAplem-
ber 1976, 530-535.

[25] R. L. Graham, Bounds on Multiprocessing Timing Anomalies\M J. Appl.
Math. 17 1969, 416-429.

[26] R.L. Graham et al. Optimization and Approximation in Deterministic Sequencing
and Scheduling: A Survey\nnals of Discrete Mathematics 8979, 287-326.

[27] A.L. Hopkins et al, FTMP-A Highly Reliable Fault-Tolerant Multiprocessor for
Aircraft, Proc. of the IEEE 66 (10Dctober, 1978.

[28] K. Jeffay, D.F. Stanat, and C.U. Martel, On non-preemptive scheduling of periodic
and sporadic taskslEEE Real-Time Systems Symposilig91, 129-139.

[29] B.W. JohnsonpPesign and Analysis of Fault Tolerant Digital Systeiddison-
Wesley, 1989.

[30] D.S. Johnsomlear-Optimal Bin Packing Algorithm®h.D. Thesis, MIT, 1973.

[31] D.S. Johnson, A. Bemers, J.D. Ullman, M.R. Garey, and R.L. Graham, Worst-
Case Performance Bounds for Simple One-dimensional Packing Algorithms,
SIAM J. Comput. 31974, 299-326.

[32] D.S. Johnson, Fast Algorithms for Bin PackidigComput. Syst. Sci, 8974, 272-

314.

[33] D.S. Johnson, and M.R. Garey, A 71/60 Theorem for Bin Packir@omplexity
1, 1985, 65-106.

[34] R.M. Kieckhafer, C.J. Walter, A.M. Finn, and P.M. Thambidurai, The MAFT
Architecture for Distributed Fault TolerandBEE Transactions on Computers 37
(4), April 1988, 398-405.

[35] J.C. Knight and P.E. Ammann, Design Fault Tolerafjability Engineering
and System Safety 32991, 25-49.

194

[36] C.M. Krishna and K.C Shin, On Scheduling Tasks with a Quick Recovery from
Failure,IEEE Transactions on Computers 35(b)ay 1986, 448-454.

[37] J. Labetoulle, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kneemptive
Scheduling of Uniform Machines Subject to Release DRegsort BW 99, Mathe-
matisch Centrum, Amsterdam, 1979.

[38] C.C. Lee and D.T. Lee, A Simple On-line Bin-Packing AlgoritidiCM 32 (3)

July 1985, 562-572.

[39] J.P.Lehoczky, L. Sha, and J.K. Strosnider, Enhanced Aperiodic Responsiveness in
Hard Real-time Environment$EE Real-Time Systems Symposia887, 261-
270.

[40] J.P. Lehoczky, L. Sha, and Y. Ding, The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case BehalitiEE Real-Time Systems
Symposium1989, 166-171.

[41] J.P. Lehoczky, Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines]EEE Real-Time Systems Symposilié®0, 201-209.

[42] J.P. Lehoczky and S. Ramos-Thuel, An Optimal Algorithm for Scheduling Soft-
Aperiodic Tasks in Fixed-Priority Preemptive SystetB&E Real-Time Systems
Symposium1992, 110-123.

[43] J.Y.T. Leung and J. Whitehead, On the Complexity of Fixed-Priority Scheduling
of Periodic, Real-Time TaskBerformance Evaluation,2982, 237-250.

[44] M.F. Liang, A Lower Bound for On-line Bin Packingformation Processing Let-
ters 10 (2) March 1982, 76-79

[45] A.L. Liestman and R.H. Campbell, A Fault Tolerant Scheduling Proble&E:
Transactions on Software Engineering 12(IN¢vember 1986, 1089-1095.

[46] C.L. Liu and J. Layland, Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment]ACM 10(1),1973, 174-189.

[47] J.W.S. Liu, K.-J. Lin, an&. Natarajan, Scheduling Real-time, Periodic Jobs Using

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

195

Imprecise ResultdEEE Real-Time Systems Symposili@87, 252-260.

J.W.S. Liu, K.-J. Lin, W.K. Shih, A.C. Yu, J.Y. Chung and W. Zhao, Algorithms
for Scheduling Imprecise Computatio@ymputey May 1989, 58-68.

A.K. Mok, Fundamental Design Problems of Distributed Systems for the Hard
Real-Time EnvironmenPh.D. Thesis, M.1.T., 1993.

Y. Oh and S.H. Son, Multiprocessor Support for Real-Time Fault-Tolerant Sched-
uling, IEEE Workshop on Architectural Aspects of Real-Time Syst&ansAnto-

nio, Texas, December 1991, 76-80.

Y. Oh and S.H. Son, An Algorithm for Real-Time Fault-Tolerant Scheduling in
Multiprocessor Systemdth Euromicro Workshop on Real-Time Systefitisens,
Greece, June 1992.

Y. Oh and S.H. Son, Preemptive Scheduling of Periodic Tasks on Multiprocessor:
Dynamic Algorithms and Their PerformanddR-CS-93-26, Department of Com-
puter Science, University of VirginiMay 1993.

Y. Oh and S.H. Son, Allocating Fixed-Priority Periodic Tasks on Multiprocessor
Systemsre-submitted tdReal-Time Systems Journkkbruary 1994.

Y. Oh and S. H. Son, Rate-Monotonic Scheduling on Multiprocessor Systems,
submitted tdnformatica February 1994.

Y. Oh and S.H. Son, Scheduling Hard Real-Time Tasks with Tolerance of Multi-
ple Processor FailureEuromicro Journal, Special Issue on Parallel Processing
in Embedded Real-Time Systed®94, to appear.

Y. Oh and S. H. Son, Enhancing Fault-Tolerance in Rate-Monotonic Scheduling,
Real-Time Systems Journal, Special Issue on Responsive Computer,3§atems
1994, to appear.

Y. Oh and S.H. Son,aBk Allocation Algorithms for Fault-tolerance in Hard Real-
time Systems, submitted EBEE Trans. on Parallel and Distributed SysteRsb-

ruary 1994.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

196

Y. Oh and S.H. Son, Scheduling Hard Reiatd Tasks with Reliability Constraint,
revised and re-submitted dJournal of Operational Research Socididay 1994.

D.K. Pradhanfault-Tolerant Computing -- Theory and Techniquéslumes |

and Il, Prentice-Hall, Englewood Cliffs, N.J., 1986.

R. RajkumarTask Synchronization in Real-Time SystdahsD. Thesis, Carnegie-
Melon University, August 1989.

K. Ramamritham, Allocation and Scheduling of Complex Periodic Tasesna-

tional Conference on Distributed Computing Systeviesy 1990.

K. Ramamritham and J.A. Stankovic, Scheduling Strategies Adopted in Spring: A
Overview, a chapter ifroundations of Real-Time Computing: Scheduling and
Resource Allocatiofed.) by A.M. van Tilborg and G.M. Koob, 1991, 277-307.

S. Ramos-Thuel and J.K. Strosnider, The Transient Server Approach to Schedul-
ing Time-Critical Recovery Operation$EE Real-Time Systems Symposium
1991, 286-295.

S. Ramos-ThueEnhancing Fault Tolerance of Real-Time Systems through Time
RedundancyPh.D. Thesis, Carnegie Mellon University, May 1993.

S. Ramos-Thuel and J.P. Lehoczky, On-line Scheduling of Hard Deadline Aperi-
odic Tasks in Fixed-Priority SystemEEE Real-Time Systems Sympositif93,
160-171.

B. Randell, System Structure for Software Fault ToleralfifeE: Transactions on
Software Engineering, 11975, 220-232.

K. Schwan and H. Zhou, Dynamic Scheduling of Hard Real-time Tasks and Real-
time ThreadslEEE Transactions on Software Engineering 181892, 736-748.

P. Serlin, Scheduling of Time Critical Procesd&®c. of the Spring Joint Com-
puters Conference 40972, 925-932.

L. Sha, J.P. Lehoczky, and R. Rajkumar, Solutions for Some Practical Problems in

Prioritized Preemptive SchedulinEEE Real-Time Systems Symposil®86,

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

197

181-191.

L. Sha, R. Rajkumad.P. Lehoczky, and. Ramamritham, Mode Change Proto-
cols for Priority-Driven Preemptive Schedulingpurnal of Real-Time Systems
1(3), 1989, 244-264.

L. Sha, R. Rajkumar, and.P. Lehoczky, Priority Inheritance Protocols: An
Approach to Real-Time SynchronizatidBEE Transactions on Computers 39(9)
1990, 1175-1185.

L. Sha and J.B. Goodenough, Real-Time Scheduling Theory andCAdgutey

April 1990, 53-65.

W-K. Shih, J.W.S. Liu, and J-Y Chung, Fast Algorithms for Scheduling Imprecise
Computations|EEE Real-Time Systems Symposit&89, 12-19.

K.G. Shin, G. Koob, and F. Jahanian, Fault-Tolerance in Real-Time Systems,
IEEE Real-Time Systems Newsletter 7 {9P1, 28-34.

T.B. Smith, Fault-Tolerant Processor Concepts and Operdtiog, of 14th IEE
Fault-Tolerant Computing Symposiudune 1984.

A. Spector and D. Gifford, The Space Shuttle Primary Computer SySi&@iyl
September 1984, 874-900.

B. Sprunt, J.P. Lehoczky, and L. Sha, Exploiting Unused Periodic Time for Aperi-
odic Service Using the Extended Priority Exchange AlgorittifiEE Real-Time
Systems Symposiuad88, 251-258.

B. Sprunt, L. Sha, and J.P. Lehoczky, Aperiodic Task Scheduling for Hard Real-
time Systemsjournal of Real-Time Systems1B89, 27-60.

B. Sprunt,Aperiodic Task Scheduling for Real-Time SystéthsD. Thesis, Carn-
egie Melon University, 1990.

J.A. Stankovic, Misconception of Real-Time ComputilitEE Computer 21 (10)
1988, 10-19.

K.W. Tindell, A. Burns, andA.J. Wellings, Mode Change in Priority Pre-emp-

[82]

[83]

198

tively Scheduled Systemi;EE Real-Time Systems Symposit@92, 100-109.

J.H. Wensley et.al, SIFT: Design and Analysis of a Fault-Tolerant Computer for
Aircraft Control,Proc. of the IEEE 66 (10Dctober 1978, 1240-1255.

A. C. Yao, New Algorithms for Bin PackingACM 27 1980, 207-227.

